
Mircea Ulinic & Seth House

Network
Automation
at Scale

Compliments of

https://www.cloudflare.com/security/?utm_source=oreilly&utm_medium=ebook&utm_campaign=network-automation

Mircea Ulinic and Seth House

Network Automation
at Scale

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-99249-4

[LSI]

Network Automation at Scale
by Mircea Ulinic and Seth House

Copyright © 2018 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Courtney Allen and Jeff Bleiel
Production Editor: Kristen Brown
Copyeditor: Jasmine Kwityn

Interior Designer: David Futato
Cover Designer: Karen Montgomery

October 2017: First Edition

Revision History for the First Edition
2017-10-10: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Network Automa‐
tion at Scale, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://oreilly.com/safari

Table of Contents

1. Introduction. 1
Salt and SaltStack 3
Installing Salt: The Easy Way 6
Introducing NAPALM 6
Brief Introduction to Jinja and YAML 8
Extensible and Scalable Configuration Files: SLS 11

2. Preparing the Salt Environment. 15
Salt Nomenclature 15
Master Configuration 19
Proxy Configuration 21
The Pillar Top File 22
Starting the Processes 23

3. Understanding the Salt CLI Syntax. 27
Functions and Arguments 27
Targeting Devices 31
Options 36

4. Configuration Management: Introduction. 39
Loading Static Configuration 39
Loading Dynamic Changes 41

5. Salt States: Advanced Configuration Management. 47
The State Top File 48
NetConfig 48
NetYANG 56

iii

Capirca and the NetACL Salt State Module 59

6. The Salt Event Bus. 65
Event Tags and Data 65
Consume Salt Events 66
Event Types 66

7. Beacons. 73
Configuration 73
Troubleshooting 75

8. Engines. 77
Engines Are Easy to Configure 77
napalm-logs and the napalm-syslog Engine 78

9. Salt Reactor. 81
Getting Started 81
Best Practices 83
Debugging 84

Acknowledgments. 87

iv | Table of Contents

CHAPTER 1

Introduction

Network automation is a continuous process of generation and
deployment of configuration changes, management, and operations
of network devices. It often implies faster configuration changes
across a significant amount of devices, but is not limited to only
large infrastructures. It is equally important when managing smaller
deployments to ensure consistency with other devices and reduce
the human-error factor. Automation is more than just configuration
management; it is a broad area that also includes data collection
from the devices, automatic troubleshooting, and self-resilience—
the network can become smart enough to remediate the problems
by itself, depending on internal or external factors.

When speaking about network automation, there are two important
classes of data to consider: configuration and operational. Configu‐
ration data refers to the actual state of the device, either the entire
configuration or the configuration of a certain feature (e.g., the con‐
figuration of the NTP peers, interfaces, BGP neighbors, MPLS etc.).
On the other hand, operational data exposes information and statis‐
tics regarding the result of the configuration—for example, synchro‐
nization of the NTP peers, the state of a BGP session, the MPLS LSP
labels generated, and so on. Although most vendors expose this
information, their representation is different (sometimes even
between platforms produced by the same vendor).

In addition to these multivendor challenges, there are others to be
considered. Traditionally, a network device does not allow running
custom software; most of the time, we are only able to configure and

1

use the equipment. For this reason, in general, network devices can
only be managed remotely. However, there are also vendors produc‐
ing whitebox devices (e.g., Arista, Cumulus, etc.), or others that
allow containers (e.g., Cisco IOS-XR, Cisco NX-OS in the latest
versions).

Regardless of the diversity of the environment and number of plat‐
forms supported, each network has a common set of issues: configu‐
ration generation and deployment, equipment replacement (which
becomes very problematic when migrating between different oper‐
ating systems), human errors and unmonitored events (e.g., BGP
neighbor torn down due to high number of receiving prefixes, NTP
unsynchronized, flapping interfaces, etc.). In addition, there is the
responsibility of implicitly reacting to these issues and applying the
appropriate configuration changes, searching for important details,
and carrying out many other related tasks.

Large networks bring these challenges to an even higher complexity
level: the tools need to be able to scale enough to manage the entire
device fleet, while the network teams are bigger and the engineers
need to access the resources concurrently. At the same time, every‐
thing needs to be accessible for everyone, inclusively for network
engineers that do not have extensive software skills. The tooling
basis must be easily configurable and customizable, in such a way
that it adapts depending on the environment. Large enterprise net‐
works are heterogeneous in that they are built from various vendors,
so being able to apply the same methodologies in a cross-platform
way is equally important.

Network automation is currently implemented using various frame‐
works, including Salt, Ansible, Chef, and Puppet. In this book we
will focus on Salt, due to its unique capabilities, flexibility, and scala‐
bility. Salt includes a variety of features out of the box, such as a
REST API, real-time jobs, high availability, native encryption, the
ability to use external data even at runtime, job scheduling, selective
caching, and many others. Beyond these capabilities, Salt is perhaps
the most scalable framework—there are well-known deployments in
companies such as LinkedIn that manage many tens of thousands of
devices using Salt.

Another particularity of network environments is dynamicity—
there are many events continuously happening due to internal or
external causes. For example, an NTP server might become

2 | Chapter 1: Introduction

unreachable, causing the device to become unsynchronized, a BGP
neighbor to be torn down, and an interface optical transceiver
unable to receive light; in turn, a BGP neighbor could leak routes,
leaving the device vulnerable to an attacker’s attempt to log in and
cause harm—the list of examples can go on and on. When unmoni‐
tored, these events can sometimes lead to disastrous consequences.
Salt is an excellent option for event-driven network automation and
orchestration: all the network events can be imported into Salt,
interpreted, and eventually trigger configuration changes as the
business logic imposes. Unsurprisingly, large-scale networks can
generate many millions of important events per hour, which is why
scalability is even more important.

The vendor-agnostic capabilities of Salt are leveraged through a
third-party library called NAPALM, a community-maintained net‐
work automation platform. We will briefly present NAPALM and
review its characteristics in “Introducing NAPALM” on page 6.

Automating networks using Salt and NAPALM requires no special
software development knowledge. We will use YAML as the data
representation language and Jinja as the template language (there
are six simple rules—three YAML, three Jinja—as we will discuss in
“Brief Introduction to Jinja and YAML” on page 8). In addition,
there are some details are Salt-specific configuration details, covered
step by step in the following chapters so that you can start from
scratch and set up a complex, event-driven automation environ‐
ment.

Salt and SaltStack
Salt is an open source (Apache 2 licensed), general-purpose automa‐
tion tool that is used for managing systems and devices. Out of the
box, it ships with a number of capabilities: Salt can run arbitrary
commands, bring systems up to a desired configuration, schedule
jobs, react in real time to events across an infrastructure, integrate
with hundreds of third-party programs and services across dozens
of operating systems, coordinate complex multisystem orchestra‐
tions, feed data from an infrastructure into a data store, extract data
from a data store to distribute across an infrastructure, transfer files
securely, and even more.

SaltStack is the company started by the creator of Salt to foster
development and help ensure the longevity of Salt, which is heavily

Salt and SaltStack | 3

https://www.napalm-automation.net

used by very large companies around the globe. SaltStack provides
commercial support, professional services and consulting, and an
enterprise-grade product that makes use of Salt to present a higher-
level graphical interface and API for viewing and managing an
infrastructure, particularly in team environments.

Speed is a top priority for SaltStack. As the company writes on its
website:

In SaltStack, speed isn’t a byproduct, it is a design goal. SaltStack
was created as an extremely fast, lightweight communication bus to
provide the foundation for a remote execution engine.

Exploring the Architecture of Salt
The core of Salt is the encrypted, high-speed communication bus
referenced in the quote above as well as a deeply integrated plug-in
interface. The bulk of Salt is the vast ecosystem of plug-in modules
that are used to perform a wide variety of actions, including remote
execution and configuration management tasks, authentication, sys‐
tem monitoring, event processing, and data import/export.

Salt can be configured many ways, but the most common is using a
high-speed networking library, ZeroMQ, to establish an encrypted,
always-on connection between servers or devices across an infra‐
structure and a central control point called the Salt master. Massive
scalability was one design goal of Salt and a single master on moder‐
ate hardware can be expected to easily scale to several thousand
nodes (and up to tens of thousands of nodes with some tuning). It is
also easy to set up with few steps and good default settings; first-
time users often get a working installation in less than an hour.

Salt minions are servers or devices running the Salt daemon. They
connect to the Salt master, which makes deployment a breeze since
only the master must expose open ports and no special network
access need be given to the minions. The master can be configured
for high availability (HA) via Salt’s multimaster mode, or in a tiered
topology for geographic or logical separation via the Syndic system.
There is also an optional SSH-based transport and a REST API.

Once a minion is connected to a master and the master has accepted
the public key for that minion the two can freely communicate over
an encrypted channel. The master will broadcast commands to min‐
ions and minions will deliver the result of those commands back to
the master. In addition, minions can request files from the master

4 | Chapter 1: Introduction

https://docs.saltstack.com/en/getstarted/speed.html
https://docs.saltstack.com/en/getstarted/speed.html

and can continually send arbitrary events such as system health
information, logs, status checks, or system events, to name just a
few.

Diving into the Salt Proxy Minion
As mentioned earlier, one of the challenges when managing network
equipment is installing and executing custom software. Whitebox
devices or those operating systems allowing containers could poten‐
tially allow installing the salt-minion package directly. But a tradi‐
tional device can only be controlled remotely, via an API or SSH.

Introduced in Salt 2015.8 (codename Beryllium), proxy minions lev‐
erage the capabilities of the regular minions (with particular config‐
uration) and make it possible to control devices such as network
gear, devices with limited CPU or memory, or others. They are basi‐
cally a virtual minion, a process capable of running anywhere in
order to control devices remotely via SSH, HTTP, or other transport
mechanism.

To avoid confusion caused by nomenclature similarities with other
frameworks, a proxy minion is not another machine, it is just one
process associated with the device managed, thus one process per
device. It is usually lightweight, consuming about 60 MB RAM.

An intrinsic property of the proxy minions is that the connection
with the remote device is always kept alive. However, they can also
be designed to establish the connection only when necessary, or
even let the user decide what best fits their needs (depending on
how dynamic the environment is).

Because the list of device types that can be controlled through the
proxy minions can be nearly infinite, each having their own proper‐
ties and interface characteristics, a module (and sometimes a third-
party library) is required.

Beginning with 2016.11 (Carbon), there are several proxy modules
included, four of them aiming to manage network gear:

• NAPALM (covered briefly in “Introducing NAPALM” on page
6)

• Junos (provided by Juniper, to manage devices running Junos)
• Cisco NXOS (for Cisco Nexus switches)

Salt and SaltStack | 5

• Cisco NSO (interface with Cisco Network Service Orchestrator)

Installing Salt: The Easy Way
SaltStack supports and maintains a shell script called Salt Bootstrap
that eases the installation of the Salt master and minion on a variety
of platforms. The script determines the operating system and ver‐
sion, then executes the necessary steps to install the Salt binaries in
the best way for that system.

Therefore, the installation becomes as easy as:

wget -O bootstrap-salt.sh https://bootstrap.saltstack.com
sudo sh bootstrap-salt.sh

This fetches the bootstrap-salt.sh script from https://bootstrap.salt
stack.com, then installs the Salt minion.

If you want to also install the Salt master, you only need to append
the -M option:

wget -O bootstrap-salt.sh https://bootstrap.saltstack.com
sudo sh bootstrap-salt.sh -M

Introducing NAPALM
NAPALM (Network Automation and Programmability Abstraction
Layer with Multivendor support) is an open source Python library
that accommodates a set of methodologies for configuration man‐
agement and operational data retrieval, uniformly, covering several
network operating systems, including Junos, Cisco IOS-XR, Cisco
IOS, Cisco NX-OS, and Arista EOS.

There are other community-driven projects for Cumulus Linux,
FortiOS, PAN-OS, MikoTik RouterOS, Pluribus Netvisor, and many
others can be provided or adapted in the user’s own environment.

The operational data is represented in cross-vendor format. For
instance, retrieving the BGP neighbors from a device running Junos,
the output is a Python dictionary with the format shown in
Example 1-1.

6 | Chapter 1: Introduction

https://bootstrap.saltstack.com
https://bootstrap.saltstack.com

Example 1-1. NAPALM output sample from a Junos device

{
 'global': {
 'peers': {
 '192.168.0.2': {
 'address_family': {
 'ipv4': {
 'accepted_prefixes': 142,
 'received_prefixes': 142,
 'sent_prefixes': 0
 }
 },
 'description': 'Amazon',
 'is_enabled': True,
 'is_up': True,
 'local_as': 13335,
 'remote_as': 16509,
 'remote_id': '10.10.10.1',
 'uptime': 8816095
 }
 }
 }
}

The output has exactly the same structure if retrieving the BGP
neighbors, using NAPALM, from a Cisco IOS-XR router or Arista
switch. The same characteristics are available for the rest of the
NAPALM features whose structure is available in the NAPALM doc‐
umentation.

Similarly, configuration management is also cross-vendor and
although the configuration loaded depends on the network OS, the
methodology is the same for all platforms. For example, when
applying manual configuration changes using the CLI of Cisco IOS,
the changes will be reflected directly into the running-config. But
using NAPALM, the changes are stored in a buffered candidate con‐
figuration and transferred into the running config only when an
explicit commit is performed. The following methods are defined for
configuration management:

Method name Method description

load_merge_candidate Populate the candidate config, either from file or text.

load_replace_candidate Similar to load_merge_candidate, but instead of a
merge, the existing configuration will be entirely replaced with
the content of the file, or the configuration loaded as text.

Introducing NAPALM | 7

http://napalm.readthedocs.io/en/latest/base.html
http://napalm.readthedocs.io/en/latest/base.html

Method name Method description

compare_config Return the difference between the running configuration and
the candidate.

discard_config Discards the changes loaded into the candidate configuration.

commit_config Commit the changes loaded using load_merge_candi
date or load_replace_candidate.

rollback Revert the running configuration to the previous state.

NAPALM is distributed via PyPI (Python Package Index), which is
the official repository for third-party Python libraries. The installa‐
tion is usually as simple as running $ pip install napalm; how‐
ever, the user might need to consider several system dependencies.
For Salt users, the process is simplified through the napalm install
formula, which performs the required steps to install the underlying
packages.

The NAPALM Proxy
Beginning with Salt 2016.11 (Carbon) the cross-vendor capabilities
of NAPALM have been integrated in Salt, allowing the network
engineers to introduce the DevOps methodologies without worry‐
ing about the multivendor issues.

The initial implementation was based exclusively on the NAPALM
proxy minion module. In 2017.7.0 (Nitrogen) the capabilities have
been extended, allowing the NAPALM modules to run under a regu‐
lar minion as well. In other words, if the device operating system
permits, the salt-minion package can be installed directly on the
device and then leverage the network automation methodologies
through NAPALM such as controlling network devices like servers.
For example, there is a SWIX extension for Arista devices to facili‐
tate the installation of the minion directly on the switch; see the Salt‐
Stack docs.

Brief Introduction to Jinja and YAML
Before diving into Salt-specific details, let’s have a look at two of the
most widely adopted template and data representation languages:
Jinja and YAML. Salt uses them by default, so it’s important that you
understand the basics.

8 | Chapter 1: Introduction

http://bit.ly/2kjIZ7p
http://bit.ly/2kjIZ7p
http://bit.ly/2yGqTyz
http://bit.ly/2yGqTyz
https://docs.saltstack.com/en/latest/topics/installation/eos.html
https://docs.saltstack.com/en/latest/topics/installation/eos.html

The Three Rules of YAML
Yet Another Markup Language (YAML) is a human-readable data
representation language. Three easy rules are enough to get started,
but for more in-depth details we encourage you to explore the
YAML documentation as well as the YAML troubleshooting tips.

Rule #1: Indentation
YAML uses a fixed indentation scheme to represent relationships
between data layers. Salt requires that the indentation for each level
consists of exactly two spaces. Do not use tabs.

Rule #2: Colons
Colons are used in YAML to represent hashes, or associative arrays
—in other words, one-to-one mappings between a key and a value.
For example, to assign the value xe-0/0/0 to the interface_name
field:

interface_name: xe-0/0/0

The same rule can be extended to a higher level and use nested key-
value pairs where we can notice the usage of the indentation:

interface:
 name: xe-0/0/0
 shutdown: false
 subinterfaces:
 xe-0/0/0.0:
 ipv4:
 address: 172.17.17.1/24

Rule #3: Dashes
Dashes are used to represent a list of items. For example:

interfaces:
 - fa1/0/0
 - fa4/0/0
 - fa5/0/0

Note the single space following the hyphen.

The Three Rules of Jinja
Jinja is a widely used templating language for Python. Like any tem‐
plate engine, it uses abstract models and data to generate

Brief Introduction to Jinja and YAML | 9

https://docs.saltstack.com/en/latest/topics/yaml/
https://docs.saltstack.com/en/latest/topics/troubleshooting/yaml_idiosyncrasies.html

documents. While Jinja can be quite complex, three simple rules will
suffice to get started with using it.

Rule #1: Double curly braces
Double curly braces means the replacement of a variable with its
value. For instance, the template in Example 1-2 will generate the
result in Example 1-3 when the variable interface_name has the
value xe-0/0/0.

Example 1-2. Example of double curly braces

interface {{ interface_name }}

Example 1-3. Rendering result of Jinja curly braces

interface xe-0/0/0

We will see later how you can send the variables to the template. For
the moment the most important thing to note is that the output is
plain text where the {{ interface_name }} has been replaced with
the value of the interface_name variable.

Rule #2: Conditional tests
Conditional operators can be used to make decisions and generate
different documents or parts of a document. The syntax of an if-elif-
else conditional test is as follows:

{% if interface_name == 'xe-0/0/0' %}
The interface is 10-Gigabit Ethernet.
{% elif interface_name == 'ge-0/0/0' %}
The interface is Gigabit Ethernet.
{% else %}
Different type.
{% endif %}

In this example, the template will generate the output “The interface
is 10-Gigabit Ethernet.” when the variable interface_name is
xe-0/0/0, or “The interface is Gigabit Ethernet.” when the variable
interface_name has the value ge-0/0/0, respectively.

Note that the endif keyword at the end of the block is mandatory.
The {% marks the beginning of a Jinja instruction. This will also
insert an additional blank line. To avoid this it can be written as

10 | Chapter 1: Introduction

{%- instead. Similarly, to avoid a new line at the end the instruction
can be written as -%}.

Rule #3: Loops
Looping through a list of values has the format shown in
Example 1-4, which generates the text in Example 1-5 when the
variable interfaces is an array containing the values ['fa1/0/0',
'fa4/0/0', 'fa5/0/0'].

Example 1-4. Example of Jinja template loop

{% for interface_name in interfaces -%}
interface {{ interface_name }}
 no shut
{% endfor -%}

Example 1-5. Rendering result of Jinja loop

interface fa1/0/0
 no shut
interface fa4/0/0
 no shut
interface fa5/0/0
 no shut

For more advanced topics, consult the Jinja documetnation. The fol‐
lowing chapters will cover some other Salt-specific advanced tem‐
plating methodologies.

Extensible and Scalable Configuration Files:
SLS
One of the most important characteristics of Salt is that data is key,
not the representation of that data. SLS (SaLt State) is the file format
used by Salt. By default it is a mixture of Jinja and YAML (i.e.,
YAML generated from a Jinja template), but flexible enough to allow
other combinations of template and data representation languages.

The SLS files can be equally complex Jinja templates that translate
down to YAML or they can just be plain and simple YAML files. For
instance, let’s see how we would declare a list of interfaces for a Juni‐
per device in an SLS file (Example 1-6).

Extensible and Scalable Configuration Files: SLS | 11

https://docs.saltstack.com/en/latest/topics/jinja/index.html

Example 1-6. Sample SLS file: Plain YAML

interfaces:
 - xe-0/0/0
 - xe-0/0/1
 - xe-0/0/2
 - xe-0/0/3
 - xe-0/0/4

The same list can be generated dynamically using Jinja and YAML
(Example 1-7).

Example 1-7. Sample SLS file: Jinja and YAML

interfaces:
{% for index in range(5) -%}
 - xe-0/0/{{ index }}
{% endfor -%}

Both of these representations are interpreted by Salt in the same
way, but the usage of Jinja together with YAML makes the code in
Example 1-7 more flexible. Although the list shown here is very
short, this methodology proves really helpful when generating
dynamic content, as it saves you from having to manually write a
long file.

The user can choose between the following template languages: Jinja
(default), Mako, Cheetah, Genshi, Wempy, or Py (which is the pure
Python renderer). Similarly, there is a variety of data representation
languages that can be used: YAML (default), YAMLEX, JSON,
JSON5, HJSON, or Py (pure Python). Even more, the user can
always extend the capabilities and define a custom renderer in their
private environment—and eventually open source it.

The Salt rendering pipeline processes template render‐
ing first to produce the data representation, which is
then given to Salt’s State compiler. By default the SLS
first renders the Jinja content followed by translating
the YAML into a Python object.

Alternative renderers can be enabled by adding a hashbang at the
top of the SLS file. For example, using the hashbang #!mako|json
will instruct Salt to interpret the SLS file using Mako and JSON. In
that case, the SLS file would be written as shown in Example 1-8.

12 | Chapter 1: Introduction

Example 1-8. Sample SLS file: Mako and JSON

#!mako|json
{
 "interfaces": [
 % for index in range(5):
 "xe-0/0/${index}",
 % endfor
]
}

Without moving the focus to Mako, the most important detail to
note is the flexibility of the SLS file. Moreover, if the user has even
more specific needs the good news is that the renderers are one of
the many pluggable interfaces of Salt, hence a new renderer can be
added very easily.

The #!jinja|yaml header is implicit.

Sensitive data can be natively encrypted using GPG and Salt will
decrypt it during runtime.

When inserting GPG-encrypted data it is necessary to explicitly use
the hashbang with the appropriate template and data representation
languages. For example, even if we work with the default Jinja/
YAML combination, the header needs to be #!jinja|yaml|gpg.

The GPG renderer has more specific configuration requirements, in
particular on the master, but they are beyond the scope of this book.
For more information, consult the setup notes.

Remarkably, the SLS file can even be written in pure Python. For
instance, the list of interfaces from before could be rewritten as
shown in Example 1-9.

Example 1-9. Sample SLS file: Pure Python

#!py

def run():
 return ['xe-0/0/{}'.format(index)
 for index in range(5)]

Extensible and Scalable Configuration Files: SLS | 13

https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html

The pure Python renderer is extremely powerful; it is basically limi‐
ted only by Python itself. The only constraint is to define the run
function, which returns a JSON-serializable object that constitutes
our data. We can go even further and design a very intelligent SLS
file that builds its content based on external services or sources.

For instance, as shown in Example 1-10, we can build the list of
interfaces dynamically by retrieving the data from a REST API
found at the URL https://interfaces-api.

Example 1-10. The flexiblity of the pure Python renderer

#!py

import requests

def run():
 ret = requests.get('https://interfaces-api')
 return ret.json()

We will see later how the SLS files can be consumed and how we can
leverage their power to help us with automating.

14 | Chapter 1: Introduction

https://interfaces-api

CHAPTER 2

Preparing the Salt Environment

This chapter focuses on the essential steps for preparing the envi‐
ronment to start automating using Salt. We will first present some of
the most important Salt-specific keywords and their meaning. Fol‐
lowing that, we’ll take a look at the main configuration files used to
control the behavior of Salt’s processes. Finally, we’ll review the pro‐
cesses startup, which implies the completion of the environment
setup.

Salt Nomenclature
Salt comes with a particular nomenclature that requires a careful
review of the documentation to fully understand. In general the doc‐
umentation is very good and complete, very often providing usage
examples, however much of it is written for an audience that already
knows Salt basics and only needs to know how a particular module
or interface is configured or called.

Pillar
Pillar is free-form data that can be used to organize configuration
values or manage sensitive data. It is an entity of data that can be
either stored locally using the filesystem, or using external systems
such as databases, Vault, Amazon S3, Git, and many other resources
(see “Using External Pillar” on page 20). Simple examples of pillar
data include a list of NTP peers, interface details, and BGP configu‐
ration.

15

When defined as SLS files they follow the methodologies described
under “Extensible and Scalable Configuration Files: SLS” on page
11, and the data type is therefore a Jinja/YAML combination, by
default, but different formats can be used if desired. For very com‐
plex use cases, we even have the option of using a pure Python
renderer.

include, exclude, extend
In order to avoid rewriting the same content repeatedly when work‐
ing with SLS files, three keywords can be used: include, exclude,
and extend. Here we will cover only the include statement. The
other two work in a similar way and they can be further explored by
consulting the SaltStack documentation.

The content of a different SLS file can be included by specifying the
name, without the .sls extension. For example, if we organize
ntp_config.sls, router1.sls, and router2.sls all in the same directory
then we can include the contents of npt_config.sls into the router1.sls
and router2.sls pillar with the syntax shown in Example 2-1.

Example 2-1. Sample pillar SLS include file (device1_pillar.sls)

include:
 - ntp_config

Note that include accepts a list, so we are able to include the con‐
tent from multiple SLS files.

The inclusion can also be relative using the common . (dot) and ..
syntax seen in navigating through a directory hierarchy.

Configuring the NAPALM Pillar
To set up a NAPALM proxy, the pillar should contain the following
information:

driver

The name of the NAPALM driver

host

FQDN or IP address to use when connecting to the device
(alternatively, this value can be specified using the fqdn, ip, or
hostname fields)

16 | Chapter 2: Preparing the Salt Environment

http://bit.ly/2yVRCIr

username

Username to be used when connecting to the device

password

Password required to establish the connection (if the driver per‐
mits, the authentication is established using a SSH key and this
field can be blank)

Additionally, we can also specify other parameters such as port,
enable_password, and so on using the optional_args field. Refer to
the NAPALM documentation for the complete list of optional
arguments.

In Examples 2-2 and 2-3, we provide two sample pillar files to man‐
age different operating systems, Junos and EOS. The same format
can be used to manage Cisco IOS devices. Note the usage of the
proxytype field, which must be configured as napalm to tell Salt that
the NAPALM proxy modules are going to be used.

Example 2-2. Sample file for Juniper router managed using NAPALM
(device1_pillar.sls)

proxy:
 proxytype: napalm
 driver: junos
 fqdn: r1.bbone.as1234.net
 username: napalm
 password: Napalm123

Example 2-3. Sample file for Arista switch managed using NAPALM
(device2_pillar.sls)

proxy:
 proxytype: napalm
 driver: eos
 fqdn: sw1.bbone.as1234.net
 username: napalm
 password: Napalm123

If you are authenticating using SSH keys, and if the
driver supports key-based authentication, the pass
word field is not mandatory or can be empty (i.e., pass
word: '').

Salt Nomenclature | 17

http://bit.ly/2fOsXB9

Example 2-4. Sample file for Cisco IOS router using SSH key for
authentication (device3_pillar.sls)

proxy:
 proxytype: napalm
 driver: ios
 fqdn: r2.bbone.as1234.net
 username: napalm
 optional_args:
 secret: s3kr3t

Grains
Grains represent static data collected from the device. The user does
not need to do anything but to be aware this information already
exists and it is available. Grains are typically handy for targeting
minions and for complex and cross-vendor templating, but not
limited to these uses. They are directly available when working with
the CLI and also inside templates.

Grains must be understood as purely static data or information very
unlikely to change, or at least data that does not change often.

NAPALM grains
When a device is managed through NAPALM the following grains
are collected:

Grain name Grain description Example

vendor Name of the vendor Cisco

model Chassis physical model MX960

serial Chassis serial number FOXW00F001

os The operating system name iosxr

version The operating system version 13.3R6.5

uptime The uptime in seconds 2344

host Host (FQDN) of the device r1.bbone.as1234.net

interfaces List of interfaces Ethernet1, Ethernet49/1,
Loopback0

username The username used for connection napalm

Configuring static grains
You also have the option of configuring grains statically inside the
proxy minion configuration file. This is a good idea when you need

18 | Chapter 2: Preparing the Salt Environment

to configure device-specific data that can be used to uniquely iden‐
tify a device or a class of devices (e.g., role can be set as spine, leaf,
etc.).

Custom grain modules
Very often, we will need additional grains to be collected dynami‐
cally from the device to determine and cache particular characteris‐
tics. Writing grain modules is beyond the scope of this book, but is
discussed in the documentation.

Master Configuration
The Salt system is very flexible and easy to configure. For network
automation our components are the salt-master, configured via
the master configuration file (typically /etc/salt/master or /srv/
master); and the salt-proxy, configured via the proxy configuration
file (in general /etc/salt/proxy, /srv/proxy or C:\salt\conf\proxy,
depending on the platform). Their location depends on the environ‐
ment and the operating system. They are structured as YAML files,
usually simple key–value pairs, where the key is the option name.
See the documentation for the complete list of options.

For our network automation needs there are not any particular
options to be configured, but file_roots and pillar_roots are
very important to understand.

File Roots
Salt runs a lightweight file server that uses the existing, encrypted
transport to deliver files to minions. Under the file_roots option
one can structure the environment beautifully, having a hierarchy
that is also easy to understand. In addition, it allows running differ‐
ent environments on the same server without any overlap between
them (see Example 2-5).

Example 2-5. Sample file_roots, using two environments

file_roots:
 base:
 - /etc/salt/
 - /etc/salt/states
 sandbox:

Master Configuration | 19

https://docs.saltstack.com/en/latest/topics/grains/#writing-grains
https://docs.saltstack.com/en/latest/ref/configuration/master.html

 - /home/mircea/
 - /home/mircea/states

In Example 2-5, we have two environments, base and sandbox,
which are custom environment names. When executing various
commands the user can specify what is the targeted environment
(defaulting to base when not explicitly specified).

Pillar Roots
The pillar_roots option sets the environments and the directories
used to hold the pillar SLS data. Its structure is very similar to
file_roots, as you can see in Example 2-6.

Example 2-6. pillar_roots sample, using the environments defined
under file_roots

pillar_roots:
 base:
 - /etc/salt/pillar
 sandbox:
 - /home/mircea/pillar

Note that under each environment we are able to specify multiple
directories, thus we can define the SLS pillar under more than one
single directory.

All subsequent examples in this book will use the
file_roots and pillar_roots configuration shown in
Examples 2-5 and 2-6.

Using External Pillar
As mentioned in “Pillar” on page 15, the pillar data can also be
loaded from external services as described in the documentation.
There are plenty of already integrated services that can be used
straightaway.

External pillar example: Vault
For security reasons a very common practice is using the HashiCorp
Vault to store sensitive information. Setup is a breeze—it only

20 | Chapter 2: Preparing the Salt Environment

https://docs.saltstack.com/en/latest/topics/development/external_pillars.html

requires a couple of lines to be appended to the master configura‐
tion (see Example 2-7).

Example 2-7. Vault external pillar configuration sample

ext_pillar:
 - vault:
 vault.host: 127.0.0.1
 vault.port: 8200
 # The scheme is optional, and defaults to https
 vault.scheme: http
 # The token is required, unless set in environment
 vault.token: 012356789abcdef

The data retrieved from the Vault can be used inside other pillar SLS
files as well, but it requires the ext_pillar_first option to be set as
true in the master configuration.

Proxy Configuration
As the proxy minion is a subset of the regular minion, it inherits the
same configuration options, as discussed in the minion configura‐
tion documentation. In addition, there are few other more specific
values discussed in the proxy minion documentation.

A notable option required for some NAPALM drivers to work prop‐
erly is multiprocessing set as false, which prevents Salt from
starting a sub-process per command; it instead starts a new thread
and the command is executed therein (see Example 2-8). This is
necessary for SSH-based proxies, as the initialization happens in a
different process; after forking the child instance it actually talks to a
duplicated file descriptor pointing to a socket, whereas the parent
process is still alive and might even be doing side-effecting back‐
ground tasks. If the parent is not suspended, you could end up with
two processes reading and writing to the same socket file descrip‐
tors. This is why the socket needs to be handled in the same process,
each task being served in a separate thread. It is essential as some
network devices are managed through SSH-based channels (e.g.,
Junos, Cisco IOS, Cisco IOS-XR, etc.). However, it can be re-enabled
for devices using HTTP-based APIs (e.g., Arista or Cisco Nexus).

Proxy Configuration | 21

https://docs.saltstack.com/en/latest/ref/configuration/minion.html
https://docs.saltstack.com/en/latest/ref/configuration/minion.html
https://docs.saltstack.com/en/latest/ref/configuration/proxy.html

Example 2-8. Proxy configuration sample file

master: localhost
pki_dir: /etc/salt/pki/proxy
cachedir: /var/cache/salt/proxy
multiprocessing: False

The Pillar Top File
Each device has an associated unique identifier, called the minion
ID. The top file creates the mapping between the minion ID and the
corresponding SLS pillar file(s).

As we can have multiple environments defined under the
file_roots master option, the Top File is also flexible enough to
create different bindings between the minion ID and the SLS file,
depending on the environment.

The top file is another SLS file named top.sls found under one of the
paths defined in the file_roots.

In this book, we will use a simple top file structure, having a one-to-
one mapping between the minion ID and the associated pillar SLS
(see Example 2-9).

Example 2-9. /etc/salt/pillar/top.sls

base:
 'device1': # minion ID
 - device1_pillar
 # minion ID 'device1' loads 'device1_pillar.sls'
 'device2': # minion ID
 - device2_pillar
 # minion id 'device2' loads 'device2_pillar.sls'
 'device3': # minion ID
 - device3_pillar
 # minion id 'device3' loads 'device3_pillar.sls'

In this file, where device1_pillar, device2_pillar, and
device3_pillar represent the name of the SLS pillar files defined in
Examples 2-2, 2-3, and 2-4.

When referencing a SLS file in the top file mapping, do
not include the .sls extension.

22 | Chapter 2: Preparing the Salt Environment

The mapping can be more complex and we can select multiple min‐
ions that use a certain pillar SLS. Targeting minions can be based on
the grains, regular expressions matched on the minion ID, a list of
IDs, static defined groups, or even external pillar data. We will
expand on this momentarily, but meanwhile, Example 2-10 illus‐
trates how an SLS file called bbone_rtr.sls can be used by a group of
minions whose IDs begin with router.

Example 2-10. Sample top file

Apply SLS files from the directory root
for the 'base' environment
base:
 # All minions with a minion ID that
 # begins with 'router'
 'router*':
 # Apply the SLS file named 'bbone_rtr.sls'
 - bbone_rtr

Remember that the top file leverages the SLS princi‐
ples, therefore the mapping from Example 2-9 can also
be dynamically created as:

base:
 {% for index in range(1, 4) -%}
 'device{{ index }}':
 - device{{ index }}_pillar
 {% endfor -%}

The top file can equally be defined using the Python
renderer, as complex and dynamic as the business logic
requires.

Starting the Processes
Long-running daemons on both the Salt master and Salt minion or
proxy minion will maintain the always-on and high-speed commu‐
nication channel. There are ways to make use of Salt without run‐
ning these daemons, but those have specific use cases and specific
limitations. This section will focus on the common configuration
using daemons.

Starting the Processes | 23

Starting the Master Process
For the scope of this book, file_roots and pillar_roots are
enough to start the master process. The only requirement is that the
file respects a valid YAML structure.

The master process can be started in daemon mode by running
salt-master -d. On a Linux system the process can be controlled
using systemd, as the Salt packages also contain the service configu‐
ration file: systemctl start salt-master. On BSD systems, there
are also startup scripts available.

Starting the Proxy Processes
While the master requires one single service to be started, in order
to control network gear we need to start one separate process per
device, each consuming approximately 60 MB RAM.

A very good practice to start with and check for misconfiguration is
to run the proxy in debug mode: salt-proxy --proxyid <MINION
ID> -l debug. When everything looks good we are able to start the
process as daemon: salt-proxy --proxyid <MINION ID> -d or use
systemd: systemctl start salt-proxy@<MINION ID>.

Using systemd, one is able to start multiple devices at a
time using shell globbing (e.g., systemctl start

salt-proxy@device*). Additionally, it presents the
advantage that systemd manages the process startup
and restart.

In case we want to avoid using systemd, Salt facilitates the manage‐
ment of the proxy processes using a beacon, and we have illustrated
this particular use case in Chapter 7.

For example, with the environment setup exemplified in the previ‐
ous paragraphs we can start the process as: salt-proxy --proxyid
device1 -d and salt-proxy --proxyid device2 -d or systemct
start salt-proxy@device1 and systemct start salt-

proxy@device2.

24 | Chapter 2: Preparing the Salt Environment

Each proxy process manages one individual network
device, so for large-scale networks this leads to manag‐
ing thousands of proxy processes. This is easier to
manage when controlling the server that is running the
proxy processes using the regular Salt minion—the
orchestration of the proxies is effectively reduced to
just managing a few configuration files!

Accepting the minion key
When a new minion is started, it generates a private and public key
pair. For security reasons the minion public key is not accepted
automatically by the master. The auto_accept configuration option
on the master can be turned on, but this is highly discouraged in
production environments. The CLI command salt-key -L will dis‐
play the list of accepted and unaccepted minions.

For this reason, we need to accept the minion key (see
Example 2-11).

Example 2-11. Accept the proxy minion key, using salt-key

$ sudo salt-key -a device1
The following keys are going to be accepted:
Unaccepted Keys:
device1
Proceed? [n/Y] y
Key for minion device1 accepted

The salt-key program can also accept shell globbing
to accept multiple minions at once. For example:

salt-key -a device* -Y

There are also good ways to automate acceptance of
minion keys using the Salt reactor or the REST API.

In this chapter we have presented several of the most important Salt-
specific keywords—they all are very important and constitute the
foundation moving forward. Very briefly, we have also covered the
processes startup. Now that you have the environment set up, go
ahead and start automating with Salt.

Starting the Processes | 25

CHAPTER 3

Understanding the Salt CLI Syntax

It is very important to understand how Salt works when running
commands from the CLI. The same methodologies can be used
when instructing the system to execute commands periodically via
Salt’s scheduler or when listening to events and via the reactor, only
the syntax is different.

The Salt CLI syntax has the following pattern:

$ sudo salt [<options>] <target> <function> [<arguments>]

One of the simplest uses is shown in Example 3-1, which executes
the test.ping function on the device identified using the minion ID
device1, without any options or arguments.

Example 3-1. Basic CLI execution invoking the test.ping execution
function

$ sudo salt device1 test.ping
output omitted

As we move forward, we’ll analyze each of the components shown
here.

Functions and Arguments
Salt is structured as a very simple and pluggable core with many fea‐
tures able to interact between them. A very important functionlity is
represented by the execution modules. They are the main entry point
into the Salt world. The execution modules are Python modules,

27

and are very easy to read (and eventually write) by anyone with
basic Python programming knowledge. Everything is linear, which
makes them flexible and easy to understand; in general, they consist
only of simple functions.

In Example 3-1 we executed test.ping: test is the name of the exe‐
cution module, while ping is the execution function inside this
module.

There are many module types in Salt and some even
have overlapping names, so it is important to always
qualify the type of the module. For example, the file
state module and the file execution module are differ‐
ent modules and used in different contexts.

This function only returns the logical value True when the minion is
up. test.ping is an excellent way to test that the minion has been
configured correctly and its key is accepted by the master. It doesn’t
mean, however, that the connection to the network device succee‐
ded. For this particular usage we can execute the net.connected
module. Repeating the exercise: the Python function connected is
defined under the Salt execution module net. While the test execu‐
tion module corresponds to a Python module called test.py, net
corresponds to napalm_network.py. This is because some modules
have a virtual name associated and they are loaded under a cross-
platform consistent name.

There are many thousands of functions available. For
the complete module reference, consult the Salt Mod‐
ule Index.

An execution function must return JSON-serializable data struc‐
tures. Thanks to this approach the output can be manipulated, por‐
ted, and reused in different modules, displayed in the shape we
require or transform it and load in a certain service. A good example
is on the CLI: the output is transformed into a more human-
readable and colorful format. There are many possibilities to adjust
the output and this can be pluggable: you even have the option of
customizing the way the output is processed and presented.

28 | Chapter 3: Understanding the Salt CLI Syntax

https://docs.saltstack.com/en/latest/salt-modindex.html
https://docs.saltstack.com/en/latest/salt-modindex.html

In Example 3-2, after test.ping was executed Salt provides the
response from device1 as True.

Example 3-2. Sample CLI output

$ sudo salt device1 test.ping
device1:
 True

Another useful function is grains.items, which provides the com‐
plete list of grains, and grains.get, which returns the value of a
given grain identified by name, as shown in Example 3-3.

Example 3-3. Retrieve the serial grain value

$ sudo salt device1 grains.get serial
device1:
 VM58737E84CF

In a similar way, pillar.items provides the pillar data available on
the minion, while pillar.get returns a specific value (see
Example 3-4).

Example 3-4. Retrieve the ntp.servers grain value

$ sudo salt device1 pillar.get ntp.servers
device1:
 - 172.17.17.1
 - 172.17.17.2

Here, the pillar key ntp.servers has the value of a list of NTP
servers. This also introduces the arguments to Example 3-4.
ntp.servers is an argument passed to the get execution function
from the pillar execution module.

To check what modules are loaded, identified by their virtual name,
we can run sys.list_modules. Similarly, to display the complete list
of available functions we can run sys.list_functions.

For network automation needs there are many execution functions
natively embedded in Salt. For example, net.arp retrieves the ARP
tables (see Example 3-5).

Functions and Arguments | 29

Example 3-5. Sample CLI output: net.arp

$ sudo salt device1 net.arp
device1:

 out:
 |_

 age:
 129.0
 interface:
 ae2.100
 ip:
 10.0.0.1
 mac:
 00:0f:53:36:e4:50
 |_

 age:
 1101.0
 interface:
 xe-0/0/3.0
 ip:
 10.0.0.2
 mac:
 00:1d:70:83:40:c0

In Example 3-5 we executed the net.arp function, which retrieves
the ARP table from device1. One can easily notice that the output is
not a Python object, though. The reasoning is that although the arp
execution function returned JSON-serializable data, Salt trans‐
formed it in a more human-readable and colorful format when dis‐
playing on the CLI. This format comes from an outputter module
called nested. The user can choose to display the data formatted by a
different outputter if they prefer.

The output is a list of ARP entries, each having the following details:
age, interface, ip, and mac. It is vendor-agnostic, thanks to
NAPALM capabilities, so executing net.arp against a device run‐
ning a different supported platform will return exactly the same
structure!

Several other samples are provided in Examples 3-6 through 3-8.

30 | Chapter 3: Understanding the Salt CLI Syntax

Example 3-6. net.arp using arguments

$ sudo salt device3 net.arp interface=TenGigE0/0/0/0
output omitted

Note that although net.arp does not require an argument in
Example 3-5, it can be passed. However, in Example 3-6, we retrieve
the ARP table from device3 but only on the interface Ten
GigE0/0/0/0.

Example 3-7. The ntp.stats execution function

$ sudo salt device2 ntp.stats 172.17.17.1
output omitted

Example 3-7 returns the NTP synchronization statistics with the
server 172.17.17.1 from device2. The ntp.stats execution func‐
tion can be equally executed without an explicit argument, in that
case it returns the synchronization details with all the NTP peers.

Example 3-8. The net.ping execution function

$ sudo salt device1 net.ping 8.8.8.8 vrf=CUSTOMER1
output omitted

In Example 3-8 we execute a ping to 8.8.8.8 from the CUSTOMER1
VRF.

You can learn more about these functions in the documentation, but
sometimes it’s easier to check it directly from the CLI by executing
sys.doc followed by the function or module name (e.g., salt
device1 sys.doc net.arp). To check which arguments are manda‐
tory and which ones are the default values, you can run sys.arg
spec in a similar way (e.g., salt device1 sys.argspec net.arp).

Targeting Devices
Targeting is used on the CLI but also in scheduled actions or when
reacting to events. It is used to select a group of minions that need to
execute a function. Targeting is a task sent by the master in a pay‐
load to all minions and the minions decide independently if the tar‐
get matched their characteristics. This is yet another optimization

Targeting Devices | 31

https://docs.saltstack.com/

that makes Salt extremely scalable. In the next sections, we will be
executing the test.ping function.

Targeting Using the Minion ID
This is the first targeting method we are exposed to. It’s very easy to
understand because it executes the function on a single minion,
identified by its ID.

As we have already seen, the command shown in Example 3-9 exe‐
cutes test.ping only on device1.

Example 3-9. Global targeting command

$ sudo salt device1 test.ping
output omitted

Targeting Using a List of Minion IDs
As shown in Example 3-10, using the -L option we can tell the salt
executable to call the function on a list of minions, their IDs being
specified as comma-separated values. (It is best to avoid spaces in-
between each ID since that format isn’t universally supported
throughout Salt.)

Example 3-10. List targeting

$ sudo salt -L device1,device2 grains.get vendor
device2:
 Juniper
device1:
 Arista

Example 3-10 is going to execute the grains.get function on
device1 and device2 using the vendor argument. The reply pro‐
vides the value of the vendor grain for each device.

The reply order from each device is not necessarily the
order we have requested. Salt works asynchronously
and the output is displayed as soon as it is received
from the minion.

32 | Chapter 3: Understanding the Salt CLI Syntax

Targeting Using Shell-Like Globbing
The minions can be selected via their minion ID using shell-style
globbing:

Pattern Explanation

* Matches everything

? Matches any single
character

[seq] Matches any character in
the sequence

[!seq] Matches any character
that is not in the sequence

The device* expression from Example 3-11 matches device1,
device2, and device3, as these are the Minions authenticated to this
Salt master whose ID starts with “device”. If you have thousands of
minions with the ID beginning with device, they all would be
matched so you don’t need to write a static list.

Example 3-11. Shell-style globbing to target minions whose ID starts
with device

$ sudo salt 'device*' grains.get model
device1:
 VMX
device2:
 vEOS
device3:
 ASR9001

Targeting Using Regular Expressions
Using Perl-compatible regular expressions (PCRE), we can use an
even more flexible way to select groups of minions using their ID
(see Example 3-12).

Example 3-12. Targeting using regular expressions

$ sudo salt -E '(device|edge)\d' test.ping
output omitted

Targeting Devices | 33

In this example, the command would be executed on minions start‐
ing with either device or edge, followed by a digit. Note the usage of
the -E option.

Targeting Using Grains
Grains can be also used to target minions using their characteristics,
as shown in Examples 3-13 through 3-15 (if you need a refresher on
the topic, refer back to “Grains” on page 18).

Example 3-13. Target devices running Junos

$ sudo salt -G 'os:junos' test.ping
output omitted

Example 3-14. Target devices running Junos 15.1F7.3

$ sudo salt -C 'G@os:junos and G@version:15.1F7.3' test.ping
output omitted

Example 3-15. Target Cisco ASR routers having TenGigE0/0/0/30 in
the list of interfaces

$ sudo salt -C 'G@vendor:cisco
and G@model:ASR*
and G@interfaces:TenGigE0/0/0/30' test.ping
output omitted

Example 3-15 shows that grain matching also accepts
globbing (model:ASR* matches any ASR model). To
match grains using regular expressions use the -P
option instead.

Targeting Using Pillar Data
In a very similar way it is also possible to target using nested pillar
values. For example, we could match the minions that have the host‐
name ending with as1234.net (Example 3-16).

Example 3-16. Target using the host field under the proxy key in pillar

$ sudo salt -I 'proxy:host:*as1234.net' test.ping
output omitted

34 | Chapter 3: Understanding the Salt CLI Syntax

The nesting levels are separated using the : character. However, this
can also be changed and select a different delimiter, using the
--delimiter option: salt --delimiter='/' -I 'proxy/host/

*as1234.net' test.ping.

This option also allows globbing. To match using regu‐
lar expressions, use the -J option.

Compound Target Matching
Everything we just covered can be combined and form a very com‐
plex target expression. The command option in that case becomes -
C and the previous options must be specified in the body of the
match string using the @ sign (see Examples 3-17 and 3-18).

Example 3-17. Target minions whose ID starts with device that are
running IOS-XR 6.x

$ sudo salt -C 'device* and G@os:iosxr and G@version:6.*' test.ping
output omitted

Example 3-18. Target MX960 and MX480 routers having the
hostname respecting a regular expression

$ sudo salt -C '
P@model:(MX960|MX480)
and J@proxy:host:^(.*bbone\.as\d+\.net)$ ' test.ping
output omitted

Defining and Targeting Using Nodegroups
For very complex examples such as the one shown in Example 3-18,
we can add their definition in the master configuration file along
with a name and then use it directly rather than typing the same
matching expression each time. These are called nodegroups, and
they serve mostly as shortcuts (see Example 3-19).

Example 3-19. Nodegroups definition in the master config file

nodegroups:
 bbone-mxs: |

Targeting Devices | 35

 P@model:(MX960|MX480)
 and J@proxy:host:^(.*bbone\.as\d+\.net)$
 iosxr6: |
 device*
 and G@os:iosxr and G@version:6.*

Which can be used through the -N CLI option (Example 3-20):

Example 3-20. Nodegroups usage

$ salt -N bbone-mxs test.ping
output omitted
$ salt -N iosxr6 test.ping
output omitted

Targeting Inside the Top File
The matching techniques presented can also be used in the top file,
where the default match is the compound matcher. We can exploit
this flexibility to create smart mappings between the device charac‐
teristics and the data entities to be provided.

For example, consider the pillar top file shown in Example 3-21.

Example 3-21. Pillar top file mappings using advanced targeting

base:
 'device* and G@os:iosxr and G@version:6.*':
 - pillar_for_iosxr6
 'N@bbone-mxs':
 - mx_routers_bbone

This top file includes the pillar_for_iosxr6.sls pillar on minions man‐
aging Cisco IOS-XR 6.x devices, and equally the mx_rout‐
ers_bbone.sls pillar for minions matching the bbone-mxs nodegroup
defined earlier in Example 3-19.

Options
The salt command has a very long list of options, which you can
retrieve by executing salt --help. In “Targeting Devices” on page
31 we have listing some of the most usual, the target options. We
highly encourage you to explore the full list of options, as they prove
very handy in many situations. Due to size limitations in this book,
we will present only a few of the most common.

36 | Chapter 3: Understanding the Salt CLI Syntax

Outputters
As we discussed earlier, the output from Salt functions is JSON seri‐
alizable. This output can be transformed in different shapes depend‐
ing on the application or personal preferences. One can choose
using the --out option between: json, yaml, nested (default),
table, raw (displays the exact Python object), or pprint (displays
the Python object in a more human-readable form).

Example 3-22. net.arp using the JSON outputter

$ sudo salt --out=json device1 net.arp
[
 {
 "interface": "ae2.100",
 "ip": "10.0.0.1",
 "mac": "00:0f:53:36:e4:50",
 "age": 129.0
 },
 {
 "interface": "xe-0/0/3.0",
 "ip": "10.0.0.2",
 "mac": "00:1d:70:83:40:c0",
 "age": 1101.0
 }
]

The outputter only displays the Python object on the
CLI in a more readable shape. It does not change its
structure!

Options | 37

CHAPTER 4

Configuration Management:
Introduction

The previous chapters covered the basics: you learned how to install
and configure the tools, and began working with the Salt CLI. Now
that you have an understanding of those fundamentals, you can start
diving into the configuration management and advanced templating
capabilities of Salt.

Configuration management is among the most important tasks in
the automation process, Salt’s built-in features simplify this process
dramatically. It is essential that you have thoroughly reviewed the
material covered in previous chpaters before proceeding with this
one, as the concepts we’ve discussed previously play an important
role in the configuration management methodologies discussed
here. For the moment we will mainly use the CLI to apply simple
configuration changes: it is important to understand and get com‐
fortable with advanced Salt templating.

Loading Static Configuration
Let’s suppose we are at a point where our large-scale network does
not have consistent configuration. Loading a static configuration
change can come in very handy for such cases (see Example 4-1).

39

Example 4-1. Load static configuration changes

$ sudo salt -G 'vendor:arista' \
 net.load_config \
 text='ntp server 172.17.17.1'
device2:

 already_configured:
 False
 comment:
 diff:
 @@ -42,6 +42,7 @@
 ntp server 10.10.10.1
 ntp server 10.10.10.2
 ntp server 10.10.10.3
 +ntp server 172.17.17.1
 ntp serve all
 !
 result:
 True

By executing net.load_config, you can load a simple configuration
change. Targeting using the grain matcher, each device that is an
Arista switch replies back with a configuration difference (the equiv‐
alent of show | compare in Junos terms). It also informs us that the
device was not already configured and the changes succeeded. The
result field is True, as you can see in Example 4-2.

Example 4-2. Loading static configuration changes: dry run

$ sudo salt -G os:eos \
 net.load_config \
 text='ntp server 172.17.17.1' \
 test=True
device2:

 already_configured:
 False
 comment:
 Configuration discarded.
 diff:
 @@ -42,6 +42,7 @@
 ntp server 10.10.10.1
 ntp server 10.10.10.2
 ntp server 10.10.10.3
 +ntp server 172.17.17.1
 ntp serve all
 !

40 | Chapter 4: Configuration Management: Introduction

 result:
 True

Executing the same command now, but appending the test=True
option, Salt will load the configuration changes, determine the con‐
figuration difference, discard the changes and return the same out‐
put as before—the difference is that the comment informs us that the
changes made into the candidate configuration have been revoked.

When executing in test mode (dry run), we do not
apply any changes in the running configuration of the
device. There are no risks: the changes are always
loaded into the candidate configuration and transfer‐
red into the running configuration only when an
explicit commit is invoked. During a dry run
(test=True) we do not commit.

If you need more changes, you can store them in a file and reference
it using the absolute path (see Example 4-3).

Example 4-3. Loading static configuration from the file

$ sudo salt -G 'vendor:arista' net.load_config /path/to/file.cfg
output omitted

Loading Dynamic Changes
Loading static changes cannot be enough; very often you will need
to configuredifferent properties depending on the device and its
characteristics. The methodologies presented here are very impor‐
tant and will be referenced often in this book. At this point, you
should focus mainly on learning the substance rather than the CLI
usage.

For dynamic changes we will use a template engine, such as Jinja
(discussed in “The Three Rules of Jinja” on page 9); see Example 4-4.

Example 4-4. Loading dynamic changes using a very basic template

$ sudo salt -G os:eos \
 net.load_template \
 template_source='hostname {{ host }}' \
 host='arista.lab'
device2:

Loading Dynamic Changes | 41

 already_configured:
 False
 comment:
 diff:
 @@ -35,7 +35,7 @@
 logging console emergencies
 logging host 192.168.0.1
 !
 -hostname edge01.bjm01
 +hostname arista.lab
 !
 result:
 True

Observe the name of the function is net.load_template. Inside the
template_source argument we have the Jinja template defined in-
line; host is the variable used inside the template.

One of the most important features in Salt is that you are able to use
the grains, pillar, and the configuration options (opts) inside the
template (see Example 4-5).

Example 4-5. Using grains inside the inline template

$ sudo salt -G os:eos \
 net.load_template \
 template_source='hostname {{ grains.model }}'
device2:

 already_configured:
 False
 comment:
 diff:
 @@ -35,7 +35,7 @@
 logging console emergencies
 logging host 192.168.0.1
 !
 -hostname edge01.bjm01
 +hostname DCS-7280SR-48C6-M-R
 !
 result:
 True

Referencing grains data is very easy, we only need to use the
reserved variable grains followed by the grain name. Example 4-5
uses the model grain, which provides the physical chassis model of
the network device.

42 | Chapter 4: Configuration Management: Introduction

Grains prove extremely useful inside templates: they allow you to
define one single template and use it across your entire network,
regardless of the vendor. Example 4-6 shows a sample template.

Example 4-6. Cross-vendor Jinja template

{%- set router_vendor = grains.vendor -%}
{%- set hostname = pillar.proxy.fqdn.replace('as1234.net', '') -%}
{%- if router_vendor|lower == 'juniper' %}
system {
 host-name {{hostname}}lab;
}
{%- elif router_vendor|lower in ['cisco', 'arista'] %}
hostname {{hostname}}lab
{%- endif %}

Using the vendor, os, and version grains, we can determine the
platform characteristics and generate the configuration accordingly,
from one single template. Note that we also introduced the usage of
another Salt property: pillar. Using this we can access data from
the pillar. In this example we configure the hostname of the device
based on the fqdn field from the proxy pillar, by removing the
as1234.net part.

Saving the contents from Example 4-6 to /etc/salt/templates/host‐
name.jinja, you can then execute the configuration load against all
your devices and the template is smart enough to know what config‐
uration to generate (see Example 4-7).

Example 4-7. Execute cross-vendor template

$ sudo salt device1 \
 net.load_template \
 /etc/salt/templates/hostname.jinja
device1:

 already_configured:
 False
 comment:
 diff:
 [edit system]
 - host-name edge01.flw01;
 + host-name r1.bbone.lab;
 result:
 True

Loading Dynamic Changes | 43

Having /etc/salt/templates configured as one of the paths under
file_roots, we are able to render the template and load the gener‐
ated configuration on the device, by executing: salt '*'

net.load_template salt://templates/hostname.jinja. Not only
is this syntax easier to remember, but it is also a very good practice
as we don’t rely on a specific environment setup.

We can even use remote templates: besides salt://,
we can equally use ftp://, http://, https://, s3://,
or swift://. The templates will be retrieved from the
corresponding location, then rendered.

Another very useful feature is the debug mode. When working with
more complex templates, we can see the result of the template ren‐
dering by using the debug flag, as shown in Example 4-8.

Example 4-8. Using the debug mode

$ sudo salt device1 net.load_template \
 salt://templates/hostname.jinja debug=True
device1:

 already_configured:
 False
 comment:
 diff:
 [edit system]
 - host-name edge01.flw01;
 + host-name r1.bbone.lab;
 loaded_config:
 system {
 host-name r1.bbone.lab;
 }
 result:
 True

Under the loaded_config we can see the exact result of the template
rendering, which is not necessarily identical to the configuration
diff.

44 | Chapter 4: Configuration Management: Introduction

For debugging purposes, in Salt we can even use log‐
ging inside our templates. For example, the following
line will log the message in the proxy log file (typically
under /var/log/salt/proxy, unless configured else‐
where):

{%- do salt.log.debug('Get salted') -%}

One of the most important features in Salt templating is reusability.
We’ve seen the grain and the pillar variables, now let’s introduce
the salt variable. This allows you to call any execution function.
While on the CLI we would execute salt device2 net.arp, inside
the template we can have {%- set arp_table = salt.net.arp() -
%} to load the output of the net.arp execution function into the
arp_table Jinja variable, then manipulate it as needed.

Example 4-9. Cross-vendor template reusing Salt functions

{%- set route_output = salt.route.show('0.0.0.0/0', 'static') -%}
{%- set default_routes = route_output['out'] -%}

{%- if not default_routes -%}
{# if no default route found in the table #}
 {%- if grains.vendor|lower == 'juniper' -%}
routing-options {
 static {
 route 0.0.0.0/0 next-hop {{ .def_nh }};
 }
}
 {%- elif grains.os|lower == 'iosxr' -%}
 {%- set def_nh = pillar.def_nh %}
 router static address-family ipv4 unicast 0.0.0.0/0 {{ def_nh }}
 {%- endif %}
{%- endif -%}

The Jinja template from Example 4-9 retrieves the default static
routes from the RIB using the route.show execution function. If the
result is empty (no static routes found), it will generate the configu‐
ration for a static route to 0.0.0.0/0 using as next hop the value of
the def_nh field from the Pillar. And we can achieve this with just a
couple of lines, covering two different types of platforms: Junos and
IOS-XR.

Loading Dynamic Changes | 45

Using the Salt advanced templating capabilities, we can
write beautiful and more readable templates, by mov‐
ing the complexity into the execution modules. There’s
a tutorial showing how in the SaltStack documenta‐
tion.

46 | Chapter 4: Configuration Management: Introduction

https://docs.saltstack.com/en/latest/topics/tutorials/jinja_to_execution_module.html
https://docs.saltstack.com/en/latest/topics/tutorials/jinja_to_execution_module.html

CHAPTER 5

Salt States: Advanced
Configuration Management

The state subsystem facilitates the management of a device to keep it
in a predetermined state. On the server side it is used to install pack‐
ages, start or restart services, and configure files or other data enti‐
ties. The same methodologies can be applied on whitebox devices
that allow custom software installation, otherwise the state system is
an excellent way to manage the configuration of traditional network
gear.

We will rely heavily on the advanced templating methodologies cov‐
ered in Chapter 4, so we can use the pillar, salt, grains, or opts
reserved keywords presented earlier to access data from the corre‐
sponding entities. In other words, we can access the data from data‐
bases, Excel files, Git, or REST APIs directly and the state does not
rely on the mechanism used to retrieve the data—Salt provides a
clear separation of the automation logic and data.

The Salt states are SLS files containing information about how to
configure the devices managed. Their structure is very simple, based
on key-value pairs and lists. As discussed in Chapter 1, SLS is by
default YAML and Jinja, very easy and flexible to design. It preserves
the SLS capabilities so that you can switch to a different combina‐
tion of data representation plus template language, or even pure
Python, when required. Inside the state SLS we invoke state func‐
tions defined in the state modules.

47

The State Top File
As any Salt subsystem, the state has its own top file, which defines
the mapping between the groups of minions that can execute a cer‐
tain state (Example 5-1).

Example 5-1. Sample state top file (/etc/salt/states/top.sls)

base:
 '*':
 - ntp
 - users
 - lldp
 'router* or G@role:router':
 - bgp
 - mpls
 'sw* or G@role:switch':
 - stp

In Example 5-1, any minion can execute the ntp.sls, users.sls,
and lldp.sls states, while bgp.sls and mpls.sls can only be exe‐
cuted by the minion ID that starts with router or having the role
grain configured as router; stp.sls can only be executed by the
switches, identified using the minion ID or their role grain. Note
that the role grain is not globally available; it must be defined by the
user according to the business requirements.

NetConfig
NetConfig is the most flexible state module for network automation.
It does not have any particular dependency, but it requires the user
to write their own templates. The cross-vendor templating method‐
ologies presented in Chapter 4 remain the same, with the advantage
that the separation between data and instructions becomes obvious.
We’ll now analyze a few simple examples serving real-world needs.

Automating the Configuration of the NTP Servers
Let’s automate the NTP configuration of a large-scale network, to
ensure that only the servers 172.17.17.1 and 172.17.17.2 are used
for synchronization. The network has devices produced by Cisco,
Juniper, and Arista.

48 | Chapter 5: Salt States: Advanced Configuration Management

The first step is placing the list of NTP servers in the pillar. In this
example, the pillar_roots option on the master is set as /etc/
salt/pillar. The NTP servers are defined as a list in an SLS file
called ntp_servers.sls, shown in Example 5-2.

Example 5-2. The ntp_servers pillar file, /etc/salt/pillar/ntp_server.sls

ntp.servers:
 - 172.17.17.1
 - 172.17.17.2

Using the include, exclude, and extend directives, we can include
the structure shown in Example 5-2 for each device very granularly,
or we can simply include it for all devices using the top file matching
strategies, as shown in Example 5-3.

Example 5-3. The pillar top file, /etc/salt/pillar/top.sls

base:
 '*':
 - ntp_servers
 'device1':
 - device1_pillar
 'device2':
 - device2_pillar
 'device3':
 - device3_pillar

device1, device2, and device3, as well as the corresponding pillar
SLS, were defined in “Configuring the NAPALM Pillar” on page 16.
The '*' tells Salt to provide the content from ntp_servers.sls to all
minions.

The next step is refreshing the pillar data, executing salt

'device*' saltutil.refresh_pillar.

We can use the pillar.get execution function to check that the
data has been loaded correctly (Example 5-4).

Example 5-4. Pillar get ntp.servers

$ sudo salt 'device*' pillar.get ntp.servers
device1:
 - 172.17.17.1
 - 172.17.17.2
device2:

NetConfig | 49

 - 172.17.17.1
 - 172.17.17.2
device3:
 - 172.17.17.1
 - 172.17.17.2

Now, as the data is available on all devices without much effort, we
can define the template (Example 5-5).

Example 5-5. /etc/salt/states/ntp/templates/ntp.jinja

{%- if grains.vendor|lower in ['cisco', 'arista'] %}
 no ntp
 {%- for server in servers %}
 ntp server {{ server }}
 {%- endfor %}
{%- elif grains.os|lower == 'junos' %}
 system {
 replace:
 ntp {
 {%- for server in servers %}
 server {{ server }};
 {%- endfor %}
 }
 }
{%- endif %}

The template checks the vendor and os grains and generates the
configuration for the NTP servers depending on the platform. Cisco
and Arista are grouped together as the syntax for the NTP configu‐
ration is very similar.

The variable servers will be sent from the state SLS, but it could
equally be directly accessed as pillar['ntp.servers'] or salt.pil
lar.get('ntp.peers'). For flexibility reasons, it is preferred to
send the data from the state SLS.

The template is defined under /etc/salt/states/ntp/templates/ntp.jinja: /
etc/salt/states is the path to the Salt file server for the states. As
defined under file_roots, ntp is the name of the state, which can
be a hierarchical directory where the templates are defined in a
dedicated directory. This is a good practice to remember when
defining complex states.

50 | Chapter 5: Salt States: Advanced Configuration Management

In the netconfig state, the configuration enforcement
behavior requires the user to explicitly use the configu‐
ration replace capabilities of the network operating
system.

If the device does not have replace capabilities, the
workaround is a supplementary execution function
that retrieves the current state of the feature that can be
executed inside the template using the salt directive
and determine what needs to be removed and added.
Although this requires one additional step and a
slightly more complex template, this is a unique feature
of Salt, permitting the configuration management for
network devices having this drawback.

The last step is defining the SLS file under file_roots—we will use
the /etc/salt/states path. A good practice is grouping the state
SLS into directories depending on their role (Example 5-6).

Example 5-6. /etc/salt/states/ntp/init.sls

ntp_servers_recipe:
 netconfig.managed:
 - template_name: salt://ntp/templates/ntp.jinja
 - servers: {{ salt.pillar.get('ntp.servers') | json }}

ntp_servers_recipe is a name assigned to the state and it tells to
execute the managed function from the netconfig state module,
using the template ntp.jinja defined under the Salt file system and
passing the variable servers that takes its value from the pillar key
ntp.servers.

The state SLS is defined as /etc/salt/states/ntp/
init.sls: ntp is the name of the state, while init.sls
is a reserved name that allows the execution simply by
specifying the name of the directory—that is, ntp. If
we would define the state SLS under /etc/salt/
states/ntp/example.sls, the state would be executed
using: ntp.example.

NetConfig | 51

Note the json Jinja filter from Example 5-6. This is not
mandatory, but almost always a very good practice
when passing objects; otherwise, values will be inter‐
preted by the YAML parser, which has some surprising
type-casting behaviors.

There are a few handy fields that can be specified in the SLS:

debug

Return also the result of template rendering. The state returns
the configuration difference, but that’s not necessarily equiva‐
lent to the changes loaded.

template_engine

When the user prefers a template engine other than Jinja.

replace

Replace the entire configuration with the generated contents.

The state.sls execution function invokes the ntp state, defined
under /etc/salt/states/ntp/init.sls, as shown in Example 5-7.

Example 5-7. NTP state execution

$ sudo salt 'device2' state.sls ntp
device2:

 ID: ntp_servers_recipe
 Function: netconfig.managed
 Result: True
 Comment: Configuration changed!
 Started: 13:15:07.608236
 Duration: 8954.756 ms
 Changes:

 diff:
 @@ -55,6 +55,7 @@
 !
 ntp source Loopback0
 -ntp server 1.2.3.4
 -ntp server 5.6.7.8
 +ntp server 172.17.17.1
 ntp serve all
 !
Summary for device2

Succeeded: 1 (changed=1)
Failed: 0

52 | Chapter 5: Salt States: Advanced Configuration Management

Total states run: 1
Total run time: 8.955 s

The code shown in Example 5-8 changes the SLS to use the debug
field.

Example 5-8. /etc/salt/states/ntp/init.sls

ntp_servers_recipe:
 netconfig.managed:
 - template_name: salt://ntp/templates/ntp.jinja
 - servers: {{ salt.pillar.get('ntp.servers') | json }}
 - debug: true

We can execute and the state will also provide the configuration ren‐
dered and loaded on the device (see Example 5-9).

Example 5-9. NTP state execution: test and debug mode

$ sudo salt 'device1' state.sls ntp test=True
device1:

 ID: ntp_servers_recipe
 Function: netconfig.managed
 Result: None
 Comment: Configuration discarded.

 Configuration diff:

 [edit system ntp]
 - peer 1.2.3.4;
 [edit system ntp]
 + server 172.17.17.1;
 + server 172.17.17.2;

 Loaded config:

 system {
 replace:
 ntp {
 server 172.17.17.1;
 server 172.17.17.2;
 }
 }
 Started: 13:07:09.983598
 Duration: 8566.857 ms
 Changes:

NetConfig | 53

Summary for device1

Succeeded: 1 (unchanged=1)
Failed: 0

Total states run: 1
Total run time: 8.567 s

This state is a very good choice for production environments
because it’s easy to check the correctness of the template and if the
changes are indeed as expected. The data is clearly decoupled and
changes are now applied according to the Pillar, whose structure is
vendor-agnostic and human-readable. In our recipe, to update the
list of NTP servers in a large-scale network only becomes as simple
as updating the /etc/salt/pillar/ntp_servers.sls file, followed by the
execution of the state.

Automating the Interfaces Configuration of a
Multivendor Network
We don’t have any specific constraint so we can structure the Pillar
data at our will (see Example 5-10).

Example 5-10. /etc/salt/pillar/device1.sls

openconfig-interfaces:
 interfaces:
 interface:
 xe-0/0/0:
 config:
 mtu: 9000
 description: Interface1
 subinterfaces:
 subinterface:
 0:
 config:
 description: Subinterface1
 ipv4:
 addresses:
 address:
 1.2.3.4:
 config:
 ip: 1.2.3.4
 prefix_length: 24

Based on the model exemplified earlier, we can start building the
skeleton for the interfaces template (Example 5-11).

54 | Chapter 5: Salt States: Advanced Configuration Management

Example 5-11. /etc/salt/states/interfaces/templates/init.jinja

{%- if grains.os|lower == 'junos' %}
replace:
interfaces {
 {%- for if_name, if_details in interfaces.interface.items() %}
 {{ if_name }} {
 mtu {{ if_details.config.mtu }};
 description {{ if_details.config.description }};
 {%- set subif =
 if_details.subinterfaces.subinterface %}
 {%- for subif_id, subif_details in subif.items() %}
 unit {{ subif_id }} {
 description "{{ subif_details.config.description }}";
 {%- if subif_details.ipv4 %}
 family inet {
 {%- set subif_addrs =
 subif_details.ipv4.addresses.address %}
 {%- for _, addr in subif_addrs.items() %}
 address {{ addr.config.ip }}/{{ addr.config.prefix_length }};
 {%- endfor %}
 }{%- endif %}
 }{%- endfor %}
 }{%- endfor %}
}
{%- endif %}

The state SLS is defined in a similar way (Example 5-12).

Example 5-12. /etc/salt/states/interfaces/init.sls

interfaces_recipe:
 netconfig.managed:
 - template_name: salt://interfaces/templates/init.jinja
 - {{ salt.pillar.get('openconfig-interfaces') | json }}

And we can simply execute the state (Example 5-13).

Example 5-13. Interfaces state execution

$ sudo salt 'device1' state.sls interfaces
device1:

 ID: interfaces_recipe
 Function: netconfig.managed
 Result: True
 Comment: Configuration changed!
 Started: 16:49:45.827128
 Duration: 7973.572 ms

NetConfig | 55

 Changes:

 diff:
 [edit]
 + interfaces {
 + xe-0/0/0 {
 + description Interface1;
 + mtu 9000;
 + unit 0 {
 + description Subinterface1;
 + family inet {
 + address 1.2.3.4/24;
 + }
 + }
 + }
 + }
Summary for device1

Succeeded: 1
Failed: 0

Total states run: 1
Total run time: 7.974 s

NetYANG
While the NetConfig state is very flexible, it requires you to define
an environment-specific template, and implicitly to decide the struc‐
ture of the pillar. Also, finding a common representation of the
structure of the pillar that makes sense and covers several platforms
turns out to be difficult sometimes. The structure from
Example 5-10 may look overly complicated when generating the
configuration, but as we’ll soon see, this is a good pattern in order to
cover the complexity and differences between various vendors. For‐
tunately, structures as in Example 5-10 have been standardized
being modeled using YANG. YANG (Yet Another Next Generation)
has been introduced in RFC6020 in October 2010 and is a data mod‐
eling language. Several organizations such as IETF have concentra‐
ted the efforts to standardize the modelation of structured entities of
information for networking applications. Network vendors also
focused on writing YANG models, but unfortunately this creates
divergence when working in multivendor environments.

We will not focus on this topic here, as our main goal is an unified
framework. A very important standardization group is OpenConfig,
which has provided a significant number of YANG models already.

56 | Chapter 5: Salt States: Advanced Configuration Management

https://tools.ietf.org/html/rfc6020
https://www.ietf.org/
https://www.openconfig.net

It consists exclusively of network operators whose goal is providing
vendor-neutral representation of configuration and operational data
based on production requirements.

Do not conflate YANG with a transport protocol, nor a
data representation language. YANG is a modelation
language that defines the structure of the documents,
regardless of their data representation language. These
documents can be JSON, XML, or YAML, having the
hierarchy tree according to the YANG model.

In Salt we have leveraged the modelation capabilities of YANG in
such a way that the user is not required to write the templates, but
only to structure the pillars following the YANG models. As the
efforts toward programmable infrastructure are still at the very
beginning so too are the tools involved: the only limitation of the
NetYANG Salt state is the capabilities of its dependency, napalm-
yang. One of the latest libraries of the NAPALM suite, napalm-yang
is a community effort to translate vendor-specific data representa‐
tion into structured documents, as per the YANG models. There are
models already well covered, but there are many others waiting to be
implemented. Without going into further details, we want to
emphasize that, although writing templates in their own environ‐
ment might be very tempting and feel more straightforward, a pub‐
lic contribution scales much better in the long term and it gives a lot
of help back to the community.

A good starting point to visualize the hierarchy of the OpenConfig
models can be found on the OpenConfig site.

Writing the Pillar Corresponding to the openconfig-lldp
YANG Model
Navigating through the YANG model using the tool referenced
above, in particular openconfig-lldp.html, and looking for the con
fig containers, we can define the YAML structure shown in
Example 5-14.

NetYANG | 57

http://ops.openconfig.net/branches/master/
http://ops.openconfig.net/branches/master/openconfig-lldp.html

Example 5-14. YAML pillar structure based on the openconfig-lldp
YANG model

openconfig-lldp:
 lldp:
 config:
 enabled: true
 hello-timer: 20 # seconds
 system-name: r1.bbone
 chassis-id-type: MAC_ADDRESS
 interfaces:
 interface:
 xe-0/0/0:
 config:
 enabled: true
 xe-0/0/1:
 config:
 enabled: true
 xe-0/0/2:
 config:
 enabled: true

Automating the Interfaces Configuration of a
Multivendor Network, Using the NetYANG State
The pillar structure from Example 5-10 has been intentionally
exemplified, anticipating the OpenConfig models, so we can reuse it
here. With that said, we only need to define the SLS and execute as
shown in Example 5-15.

Example 5-15. State SLS for the NetYANG state (/etc/salt/states/
oc_interfaces/init.sls)

interfaces_oc_config:
 napalm_yang.configured:
 - data: {{ salt.pillar.get('openconfig-interfaces') | json }}
 - models:
 - models.openconfig_interfaces

Without having to write an environment-specific template, we have
the possibility to execute the state and deploy the changes on the
device, which creates exactly the same configuration to be loaded on
the device, but with much less effort. See Example 5-16.

58 | Chapter 5: Salt States: Advanced Configuration Management

Example 5-16. OpenConfig interfaces state execution

$ sudo salt 'device1' state.sls oc_interfaces
device1:

 ID: interfaces_oc_config
 Function: napalm_yang.configured
 Result: True
 Comment: Configuration changed!
 Started: 16:46:59.262230
 Duration: 7612.234 ms
 Changes:

 diff:
 [edit]
 + interfaces {
 + xe-0/0/0 {
 + description Interface1;
 + mtu 9000;
 + unit 0 {
 + description Subinterface1;
 + family inet {
 + address 1.2.3.4/24;
 + }
 + }
 + }
 + }
Summary for device1

Succeeded: 1
Failed: 0

Total states run: 1
Total run time: 7.612 s

Capirca and the NetACL Salt State Module
Capirca is a mature open source library for multiplatform ACL gen‐
eration, developed by Google. It simplifies the generation and main‐
tenance of complex filters for more than ten operating systems,
including the most common: Cisco IOS, IOS-XR, NX-OS, Arista,
Juniper, Palo Alto, and Brocade.

The library requires a configuration file with a specific format, but
in Salt the default interpreter is bypassed and we are able to define
the data in the format preferred for the pillar, or external pillars in
an external service.

Capirca and the NetACL Salt State Module | 59

https://github.com/google/capirca

The NetACL Salt state requires Capirca to be installed. For the fire‐
wall configuration of network devices, this is yet another alternative
for quick development without much effort, but it requires a careful
read of the documentation in order to understand the caveats.
Again, if you discover limitations, consider contributing to Capirca
as this is the beauty of open source.

Let’s assume we need to automate the configuration of a firewall fil‐
ter that allows TCP traffic from 1.2.3.4 on port 1717, then counts,
and finally rejects anything else.

The pillar structure and the fields are very naturally defined, but
there are also platform-specific options such as counter or policer
and we highly recommend consulting the wiki page.

Example 5-17. NetACL pillar structure sample

acl:
 - FILTER-EXAMPLE:
 terms:
 - ALLOW-PORT:
 source_address: 1.2.3.4
 protocol: tcp
 port: 1717
 action: accept
 counter: ACCEPTED-PORT
 - DENY-ALL:
 counter: DENY-ALL
 action: deny

The state SLS file is again very simple (Example 5-18).

Example 5-18. State SLS salt://firewall/init.sls (/etc/salt/states/
firewall/init.sls)

state_filter_example:
 netacl.filter:
 - filter_name: FILTER-EXAMPLE
 - pillar_key: acl

netacl.filter is the name of the state function. The netacl state
module has three main functions available: filter, to manage the
configuration of a specific firewall filter; term, for the management
of a certain term inside a filter; and managed, for the entire configu‐
ration of the firewall. The filter_name field specifies the name of
the filter (FILTER-EXAMPLE, in this case), as configured in the pillar,

60 | Chapter 5: Salt States: Advanced Configuration Management

https://github.com/google/capirca/wiki/Policy-format#optionally-supported-keywords

and the pillar_key field specifies the Pillar key where the firewall
configuration is specified (acl, in this case).

Example 5-19 shows everything required for executing the state.

Example 5-19. Execute the NetACL state

$ sudo salt device1 state.sls firewall
device1:

 ID: state_filter_example
 Function: netacl.filter
 Result: True
 Comment: Configuration changed!
 Started: 11:58:44.709472
 Duration: 11879.601 ms
 Changes:

 diff:
 [edit firewall family inet]
 + /*
 + ** $Id: state_filter_example $
 + ** $Date: 2017/06/15 $
 + **
 + */
 + filter FILTER-EXAMPLE {
 + interface-specific;
 + term ALLOW-PORT {
 + from {
 + source-address {
 + 1.2.3.4/32;
 + }
 + protocol tcp;
 + port 1717;
 + }
 + then {
 + count ACCEPTED-PORT;
 + accept;
 + }
 + }
 + term DENY-ALL {
 + then {
 + count DENY-ALL;
 + discard;
 + }
 + }
 + }

Summary for device1

Capirca and the NetACL Salt State Module | 61

Succeeded: 1
Failed: 0

Total states run: 1
Total run time: 11.880 s

Moving forward, let’s enhance the ALLOW-PORT term to allow also
UDP traffic over the 1719 port.

For flexibility reasons most of the fields can be either a single value
or a list of values. With that said, we only need to transform the
fields port and protocol to a list of values (Example 5-20).

Example 5-20. NetACL pillar structure sample: list of values

acl:
 - FILTER-EXAMPLE:
 terms:
 - ALLOW-PORT:
 source_address: 1.2.3.4
 protocol:
 - tcp
 - udp
 port:
 - 1717
 - 1719
 action: accept
 counter: ACCEPTED-PORT
 - DENY-ALL:
 counter: DENY-ALL
 action: deny

The order of the terms is important! The configuration
generated and loaded on the device reflects the order
defined in the pillar.

In this chapter we have presented three of the most important Salt
states for network automation. We encourage you to consider each
of them and decide which one is the most suitable to fulfill the needs
of your particular environment.

The Salt community also provides pre-written states under the
name of Salt formulas, which can be downloaded and executed. The
user only needs to populate the data into the Pillar. Formulas are
also a good resource to learn best practices for maintainable states.

62 | Chapter 5: Salt States: Advanced Configuration Management

Examples of such formulas include napalm-interfaces for interfaces
configuration management on network devices, or napalm-install to
install NAPALM and the underlying system dependencies, and so
on.

Capirca and the NetACL Salt State Module | 63

https://github.com/saltstack-formulas/napalm-interfaces-formula
https://github.com/saltstack-formulas/napalm-install-formula

CHAPTER 6

The Salt Event Bus

Salt is a heavily asynchronous tool that comes with all the simplicity,
reliability, and difficulty inherent in asynchronicity. Minions can
request data and files from the master, send job returns or other
data, refresh authentication, and more and all of this can happen at
any time. Sometimes this is in response to user actions on either the
minion or master; other times it is a scheduled job or routine main‐
tenance.

Salt makes use of an event bus internally to send messages from
minion to master and from one process to another. As with most
things in Salt, this event bus is also exposed to users to extend, read
from, and write to.

Event Tags and Data
A Salt event consists of two things: an event tag and event data.
Event tags are a slash-delimited string where each slash provides a
level of namespacing. Event data is a dictionary that contains a time‐
stamp plus any arbitrary data useful for that type of event.

For example, when a minion finishes processing a job and sends the
job return data back to the master, an event is fired that looks simi‐
lar to the one shown in Example 6-1.

Example 6-1. salt/job/20170706170156951774/ret/device1

{
 "_stamp": "2017-07-06T23:01:57.098368",

65

 "...snip...": null
}

All Salt events start with salt/, all Salt events start with salt/job/,
and so on, with each slash delimiting a new level of namespacing.
The event bus in Salt can get quite busy so event tags are often
matched-on to filter unwanted event types. (Event tags that do not
contain slashes are legacy tags and should be ignored.)

Any user-generated events should define a unique namespace spe‐
cific to that user or specific to a particular team or workflow.

Consume Salt Events
Salt events are easily viewed and processed from a variety of sources.

Reactor
Most common is to use Salt’s reactor system to match certain events
and initiate another Salt action in response. This is described in
detail in Chapter 9.

HTTP Stream
salt-api via the rest_cherrypy module can expose Salt’s event bus
as an HTTP stream for easy access from external tools or even exter‐
nal systems.

Raw ZeroMQ
And finally, for the adventurous, Salt’s event bus is simply a ZeroMQ
pub/sub socket that can be consumed by the ZeroMQ bindings for
any supported programming language.

Event Types
There are many types of events for different parts of Salt or for vari‐
ous actions. In addition, custom event types are fully supported.

Job Events
A new job event is created when the master generates a job ID and
before it broadcasts the new job to listening minions (Example 6-2).

66 | Chapter 6: The Salt Event Bus

Example 6-2. salt/job/20170706170156951774/new

{
 "_stamp": "2017-07-06T23:01:56.953760",
 "arg": [],
 "fun": "test.ping",
 "jid": "20170706170156951774",
 "minions": [
 "device1"
],
 "tgt": "*",
 "tgt_type": "glob",
 "user": "shouse"
}

Notable fields include the following:

minions

An array of minion IDs that the master expects to receive
returns from for the target specified in this job. This is only an
educated guess produced by matching the target against minion
grains that have been cached on the master—the minions them‐
selves perform the final matching.

user

The person who initiated the command. This value will be the
local username or eauth username, and will show if the com‐
mand was run via sudo. Very useful for keeping long-term audit
records of who ran what, where, and when.

Separate job return events are created for each minion when each
minion completes and job and delivers the result back to the master
(Example 6-3).

Example 6-3. salt/job/20170706170156951774/ret/device1

{
 "_stamp": "2017-07-06T23:01:57.098368",
 "cmd": "_return",
 "fun": "test.ping",
 "fun_args": [],
 "id": "device1",
 "jid": "20170706170156951774",
 "retcode": 0,
 "return": true,
 "success": true
}

Event Types | 67

Notable fields include the following:

success

A Boolean value for whether Salt detected any internal errors
while running the job. Consult along with “retcode” to deter‐
mine overall success.

retcode

A return code describing any module-level or system-level
errors while running the job. Any non-zero number indicates
failure; consult along with “success” to determine overall suc‐
cess.

Authentication Events
Authentication events occur when a minion performs an authentica‐
tion handshake with the master, or when an unauthenticated min‐
ion polls the master to learn if its key has been accepted yet. The
master will periodically rotate the AES key it uses to encrypt broad‐
casts which also triggers a re-auth handshake (Example 6-4).

Example 6-4. salt/auth

{
"_stamp": "2017-07-06T23:00:33.076164",
"act": "accept",
"id": "device1",
"pub": "-----BEGIN PUBLIC KEY-----
[...snip...]-----END PUBLIC KEY-----",
"result": true
}

The act field gives the current status of this minion’s key. Possible
values are accept if the key has been accepted, pend if the key has
not yet been accepted, and reject if the key has been rejected. Use‐
ful to automate accepting the key for a new minion, perhaps along
with some custom validation logic.

Minion Start Events
Minion start events are triggered each time a minion establishes a
connection with a master. The minion is ready to receive jobs from
the master once this event is fired, so it is a good event to use to per‐

68 | Chapter 6: The Salt Event Bus

form an initialization action such as running a highstate to bring the
minion up to the latest configured state (Example 6-5).

Example 6-5. salt/minion/device1/start

{
 "_stamp": "2017-07-06T23:00:54.252873",
 "cmd": "_minion_event",
 "data": "Minion device1 started at Thu Jul 6 17:00:54 2017",
 "id": "device1",
 "pretag": null,
 "tag": "salt/minion/device1/start"
}

Key Events
Key events are triggered in response to changes to minion keys via
the salt-key CLI utility as well as functions in the key Wheel mod
ule.

Authentication events and minion start events are better choices for
most operations that send a command to the minion, because a
minion may not be available to respond at the time this event is fired
(Example 6-6).

Example 6-6. salt/key

{
 "_stamp": "2017-07-07T01:27:44.656330",
 "act": "accept",
 "id": "device2",
 "result": true
}

The act field gives the action taken for the given key, such as accept
if it was newly accepted or delete if it was deleted.

Presence Events
Presence is a system to determine which minions are currently con‐
nected to a master by querying only the local system and not send‐
ing executions to minions (such as with test.ping).

It works by consulting the /proc/net/tcp table and cross-
referencing any IPs connected to Salt’s publish port with the IP
addresses in the local cache of minion grains. It is useful as a light‐

Event Types | 69

weight check only and not for sensitive operations since it does not
make use of Salt’s authentication system. And it requires that the
minion connect to the master using the same IP address it sees
locally (i.e., not through a NAT).

The master can generate events that contain minion headcount
information. This system can be enabled by adding pres

ence_events: True to the master config file.

Example 6-7 generates a list of all currently connected minions, gen‐
erated every 30 seconds.

Example 6-7. salt/presence/present

{
 "_stamp": "2017-07-07T01:38:41.569652",
 "present": [
 "device1"
]
}

Example 6-8 generates two lists of minion IDs that show changes in
the connected minion headcount since the last poll interval. This is
useful for detecting and responding to accidentally disconnected
minions within a small window of time.

Example 6-8. salt/presence/change

{
 "_stamp": "2017-07-07T01:36:43.357588",
 "new": [],
 "lost": [
 "device1"
]
}

State Events
State events cause each minion to emit progress events during a state
run as it completes each individual state function in the state tree, as
seen in Example 6-9. They are another opt-in event type and can be
enabled by adding state_events: True to the Salt master config
file.

70 | Chapter 6: The Salt Event Bus

Example 6-9. salt/job/20170706200340461543/prog/device1/0

{
 "_stamp": "2017-07-07T02:03:40.892345",
 "cmd": "_minion_event",
 "data": {
 "len": 4,
 "ret": {
 "__id__": "stage_one",
 "__run_num__": 0,
 "changes": {},
 "comment": "Success!",
 "duration": 0.75,
 "name": "stage_one",
 "result": true,
 "start_time": "20:03:40.877168"
 }
 },
 "id": "device1",
 "jid": "20170706200340461543",
 "tag": "salt/job/20170706200340461543/prog/device1/0"
}

Notable fields include the following:

data.len

The total number of states in the current state run.

data.ret.__run_num__

A counter (zero-indexed) that keeps track of the order that each
state function was run. Progress through the entire state run can
be calculated as a percentage via (data.ret.__run_num__ +

1) / data.len * 100.

This chapter introduced the Salt event bus. This constitutes the basic
knoweledge for the event-driven infrastructure. In the following
chapters you will learn how to interact directly with the bus, how to
generate events, and how to consume them and trigger actions.

Event Types | 71

CHAPTER 7

Beacons

By default, beacon modules run on a fast, one-second interval and
emit Salt events. Their main function is to import external events on
the Salt bus. For this reason, they pair quite well with the Salt reactor
(introduced in Chapter 9). For example, the inotify beacon can
watch a file or directory and emit an event if any files are modified,
then the reactor can kick off a state run to put the file back into the
desired state.

There are many beacon modules that cover a wide variety of tasks.
To name just a few: btmp and wtmp watch user logins; sh watches
user shell activity; diskusage, load, memusage, and network_info
regularly poll relevant system stats and emit events if a threshold has
been crossed; status can emit regular events containing current sys‐
tem stats; log and journald can watch log files for certain patterns
and emit an event with matching log entries; haproxy and service
can monitor services and emit events if the service is down or over‐
loaded. Like other Salt modules, new beacon modules are easy to
write if you have a custom need.

Configuration
Beacon configuration lives in the Salt minion configuration file
under a beacons key. As usual, make sure any dependencies for the
module are also installed on the minion, and restart the minion dae‐
mon after making changes to the config file.

73

Beacons can be equally used to ensure that processes are alive, and
restart them otherwise. Considering that a number of proxy minion
processes are executed on a server which is managed using the regu‐
lar Minion, we can use the salt_proxy beacon to keep them alive.

Remember: the proxy minions manage the network
devices, while the regular minion manages the server
where the proxy processes run.

Consider the following beacon configuration, which mantains the
alive status of the proxy processes managing our devices from previ‐
ous examples in just a few simple lines:

beacons:
 salt_proxy:
 - device1: {}
 - device2: {}
 - device3: {}

After restarting the minion process, we can observe events with the
following structure on the Salt bus:

salt/beacon/minion1/salt_proxy/ {
 "_stamp": "2017-08-25T10:17:20.227887",
 "id": "minion1",
 "device1": "Proxy device1 is already running"
}

minion1 is the ID of the minion that manages the server where the
proxy processes are executed.

In case a proxy process dies, the salt_proxy beacon will restart it, as
seen from the event bus:

salt/beacon/minion1/salt_proxy/ {
 "_stamp": "2017-08-25T10:17:31.503653",
 "id": "minion1",
 "device1": "Proxy device1 was started"
}
salt/minion/device1/start {
 "_stamp": "2017-08-25T10:17:42.676464",
 "cmd": "_minion_event",
 "data": "Minion device1 started at [...]",
 "id": "device1",
 "pretag": null,
 "tag": "salt/minion/device1/start"
}

74 | Chapter 7: Beacons

A good approach to monitor the health of the minion server is using
the status beacon, which will emit the system load average every 10
seconds:

beacons:
 status:
 - interval: 10 # seconds
 - loadavg:
 - all

The event takes the following format:

salt/beacon/minion1/status/2017-08-11T09:28:28.233194 {
 "_stamp": "2017-08-11T09:28:28.240186",
 "data": {
 "loadavg": {
 "1-min": 0.01,
 "15-min": 0.05,
 "5-min": 0.03
 }
 },
 "id": "minion1"
}

The status beacon—together with others such as dis
kusage, memusage, network_info or network_set

tings—can also be enabled when managing network
gear that permits installing the Salt minion directly on
the platform, in order to monitor their health from
Salt, and eventually automate reactions.

See the documentation for each beacon module for how to config‐
ure it and when and what it will emit. The events can be seen on the
master using the state.event Runner, and the reactor (see Chap‐
ter 9) can be configured to match on beacon event tags.

Troubleshooting
The best way to troubleshoot beacon modules is to start the minion
daemon in the foreground with trace-level logging: salt-minion -l
trace. Look for log entries to see if the module is loaded success‐
fully, and then watch for log entries that appear for each interval tick
to make sure the beacon is running.

Troubleshooting | 75

https://docs.saltstack.com/en/latest/ref/runners/all/salt.runners.state.html

CHAPTER 8

Engines

Engines are another interface that interacts directly with the event
bus. While beacons are typically used to import events from external
source, engines can be designed bidirectionally. That means they can
both import external events and translate them into structured data
that can be interpreted by Salt, or export Salt events into different
services.

Engines Are Easy to Configure
As most Salt subsystems, engines can be configured on the master
or the Minion side depending on the application requirements.

They are configured via a top-level section in the master or (proxy)
minion configuration. The following example is an excellent way to
monitor the entire Salt activity in real time by pushing the events
into Logstsh, via HTTP(S):

engine:
 - http_logstash:
 url: https://logstash.s.as1234.net/salt

Under the engine section we can define a list of Engines, each hav‐
ing its particular settings. In this example, for the http_logstash
engine we have only configured the url of the Logstash instance
where to log the Salt events.

There are several engines by default embedded into Salt, any of them
having a potential to be used in the network automation environ‐
ment, directly or indirectly, for various services, including Docker,

77

Logstash, or Redis. Engines can be equally used to facilitate “Chat‐
Ops”, where they forward the requests between a common chat
application, such as HipChat or Slack, and the Salt master.

napalm-logs and the napalm-syslog Engine
For event-driven, multivendor network automation needs, begin‐
ning with the release codename Nitrogen (2017.7), Salt includes an
engine called napalm-syslog. It is based on napalm-logs, which is a
third-party library provided by the NAPALM Automation
community.

The napalm-logs Library and Daemon
Although written and maintained by the NAPALM Automation
community, napalm-logs has a radically different approach than the
rest of the libraries provided by the same community. While the
main goal of the main NAPALM library is to ease the connectivity
to various network platforms, napalm-logs is a process running
continuously and listening to syslog messages from network devices.
The inbound messages can be directly received from the network
device, via UDP or TCP, either retrieved from other applications
including Apache Kafka, ZeroMQ, Google Datastore, etc. The inter‐
face ingesting the raw syslog messages is called listener and is plug‐
gable, so the user can extend the default capabilities by adding
another method to receive the messages. napalm-logs processes the
textual syslog messages and transforms them into structured objects,
in a vendor-agnostic shape. The output objects are JSON serializa‐
ble, whose structure follows the OpenConfig and IETF YANG
models.

For example, the syslog message shown in Example 8-1 is sent by a
Juniper device when a NTP server becomes unreachable.

Example 8-1. Raw syslog message from Junos

<99>Jul 13 22:53:14 device1 xntpd[16015]: NTP Server
172.17.17.1 is Unreachable

A similar message, presenting the same notification, sent by a device
running IOS-XR, looks like Example 8-2.

78 | Chapter 8: Engines

Example 8-2. Raw syslog message from IOS-XR

<99>2647599: device3 RP/0/RSP0/CPU0:Aug 21 09:39:14.747 UTC:
ntpd[262]: %IP-IP_NTP-5-SYNC_LOSS : Synchronization lost :
172.17.17.1 : The association was removed

The messages examplified here have a totally different structure,
although they present the same information. That means, in multi‐
vendor networks, we would need to apply different methodologies
per platform type to process them.

But using napalm-logs, their representation would be the same,
regardless of the platform, as in Example 8-3.

Example 8-3. Structured napalm-logs message example

{
 "error": "NTP_SERVER_UNREACHABLE",
 "facility": 12,
 "host": "device1",
 "ip": "127.0.0.1",
 "os": "junos",
 "severity": 4,
 "timestamp": 1499986394,
 "yang_message": {
 "system": {
 "ntp": {
 "servers": {
 "server": {
 "172.17.17.1": {
 "state": {
 "stratum": 16,
 "association-type": "SERVER"
 }
 }
 }
 }
 }
 }
 },
 "yang_model": "openconfig-system"
}

The object under the yang_message key from Example 8-3 respects
the tree hierarchy standardized in the openconfig-system YANG
model.

napalm-logs and the napalm-syslog Engine | 79

http://bit.ly/2fHZpkZ
http://bit.ly/2fHZpkZ

Each message published by napalm-logs has a unique
identification name, specified under the error field
which is platform-independent.
yang_model references the name of the YANG model
used to map the data from the original syslog message
into the structured object.

These output objects are then published over different channels,
including ZeroMQ (default), Kafka, TCP, etc. Similar to the listener
interface, the publisher is also pluggable.

By default, all the messages published by napalm-logs are encrypted
and signed, however this behavior can be disabled—though doing
so is highly discouraged.

Due to its flexibility, napalm-logs can be used in various topologies.
For example, you might opt for one daemon running in every data‐
center, securely publishing the messages to a central collector.
Another approach is to simply configure the network devices to
send the syslog messages to a napalm-logs process running cen‐
trally, where multiple clients can connect to consume the structured
messages. But many other possibilities exist beyond these two exam‐
ples—there are no design constraints!

The napalm-syslog Salt Engine
The napalm-syslog Salt Engine is a simple consumer of the napalm-
logs output objects: it connects to the publisher interface, con‐
structs the Salt event tag, and injects the event into the Salt bus. The
data of the event is exactly the message received from napalm-logs,
while the tag contains the napalm-logs error name, the network
operating system name and the hostname of the device that sent the
notification (Example 8-4).

Example 8-4. Salt event imported from napalm-logs

napalm/syslog/junos/NTP_SERVER_UNREACHABLE/device1 {
 "yang_message": {
... snip ...
 }
}

80 | Chapter 8: Engines

CHAPTER 9

Salt Reactor

The reactor is an engine module that listens to Salt’s event bus and
matches incoming event tags with commands that should be run in
response. It is useful to automatically trigger actions in immediate
response to things happening across an infrastructure.

For example, a file changed event from the inotify beacon could
trigger a state run to restore the correct version of that file, and a
custom event pattern could post info/warning/error notifications to
a Slack or IRC channel.

The reactor is an engine module (see Chapter 8) and
uses the event bus (Chapter 6) so it will be helpful to
read those chapters before this one. In addition, the
reactor is often used to respond to events generated by
beacon (Chapter 7) or engine modules.

Getting Started
Salt’s reactor adheres to the workflow: match an event tag; invoke a
function. It is best suited to invoking simple actions, as we’ll see in
“Best Practices” on page 83. The configuration is placed in the mas‐
ter config file and so adding and removing a reaction configuration
will require restarting the salt-master daemon.

To start we will create a reaction that listens for an event and then
initiates a highstate run on that minion (Example 6-5). The end
result is the same as with the startup_states setting except that the

81

master will trigger the state run rather than the minion. Add the
code shown in Example 9-1 to your master config.

Example 9-1. /etc/salt/master

reactor:
 - 'napalm/syslog/*/NTP_SERVER_UNREACHABLE/*':
 - salt://reactor/exec_ntp_state.sls

As is evident from the data structure, we can listen for an arbitrary
list of event types and in response trigger an arbitrary list of SLS
files. The configuration from Example 9-1 instructs the reactor to
invoke the salt://reactor/exec_ntp_state.sls reactor SLS file, whenever
there is an event on the bus matching napalm/syslog/*/

NTP_SERVER_UNREACHABLE/*, the asterisk meaning that it can match
anything. For example, this pattern would match the tag from
Example 8-4—that is, napalm/syslog/junos/NTP_SERVER_UNREACHA
BLE/device1. In other words, whenever there is a
NTP_SERVER_UNREACHABLE notification, from any platform, from any
device, the reactor system would invoke the salt://reactor/
exec_ntp_state.sls SLS.

The reactor SLS respects all the characteristics presented in “Exten‐
sible and Scalable Configuration Files: SLS” on page 11, with the
particularity that there are two more special variables available: tag,
which constitutes the tag of the event that triggers the action, and
data, which is the data of the event. Next, we will create the reactor
file, shown in Example 9-2 (you’ll also need to create any necessary
directories).

Example 9-2. salt://reactor/exec_ntp_state.sls

triggered_ntp_state:
 cmd.state.sls:
 - tgt: {{ data.host }}
 - arg:
 - ntp

Let’s unpack that example, line by line:

The ID declaration (i.e., triggered_ntp_state) is best used as a
human-friendly description of the intent of the state.

82 | Chapter 9: Salt Reactor

You’ll notice that the function declaration differs from Salt
states in that it is prefixed by an additional segment, cmd. This
denotes the state.sls function will be broadcast to minion(s)
exactly like the salt CLI program. Other values are runner and
wheel for master-local invocations.

The tgt argument is the same value the salt CLI program
expects. So is arg. In fact, this reactor file is exactly equivalent to
this CLI (Jinja variables replaced): salt --async device1

state.sls ntp. Both the CLI and the reactor call to Salt’s
Python API to perform the same task; the only difference is syn‐
tax.

In this case, host is the field from the event data, which can be
used to target the minion, when the ID is the same value as the
hostname configured on the device. There can be many match
possibilities, depending on the pattern the user chooses to
define the minion IDs.

Looking at the entire setup, when the napalm-syslog engine is
started, in combination with the configuration bits from Examples
9-1 and 9-2, we instruct Salt to automatically run the ntp state when
the device complains that a NTP server is unreachable. This is a
genuine example of event-driven network automation.

Best Practices
The reactor is a simple thing: match an event tag, invoke a function.
Avoid anything more complicated than that. For example, even
invoking two functions is probably too much. This is for two rea‐
sons: debugging the reactor involves many, heavy steps; and the
reactor is limited in functionality by design.

The best place to encapsulate running complex workflows from the
Salt master is, of course, in a Salt orchestrate file—and the reactor
can, of course, invoke an orchstrate file via runner.state.orch.
Once again this is exactly equivalent to the CLI command salt-run
state.orch my_orchestrate_file pillar='{param1: foo}':

something_complex:
 runner.state.orch:
 - mods: my_orchestrate_file

Best Practices | 83

 - pillar:
 param1: foo

Invoking orchestrate from the reactor has two primary benefits:

• The complex functionality can be tested directly from the CLI
using salt-run without having to wait for an event to be trig‐
gered. And the results can be seen directly on the CLI without
having to look through the master log files. Once it is working,
just call it from the reactor verbatim.

• This functionality can be invoked not only by the reactor but by
anything else in the Salt ecosystem that can invoke a Runner,
including other orchestrate runs. It becomes reusable.

For very complex workflows where the action is triggered as a result
of multiple events or aggregate data, we recommend using the Tho‐
rium complex reactor.

Debugging
The easiest way to debug the reactor is to stop the salt-master dae‐
mon, and then to start it again in the foreground with debug-level
logging enabled: salt-master -l debug. The only useful in-
development logging the reactor performs is at the debug level.
There are primarily two log entries to search for:

• Compiling reactions for tag <tag here>

• Rendered data from file: <file path here>

The first log entry will tell you whether the incoming event tag
actually matched the configured event tag. Typos are common and
don’t forget to restart the salt-master daemon after making any
changes. If you don’t see this log message troubleshoot that before
moving on.

The second log entry will contain the rendered output of the SLS file.
Read it carefully to be sure that the file Jinja produced is valid
YAML, and is in the correct format and will call the function you
want using the arguments you want.

That’s all there is to debugging the reactor, although it can be harder
than it sounds. Remember to keep your reactor files simple! Once

84 | Chapter 9: Salt Reactor

https://docs.saltstack.com/en/latest/topics/thorium/index.html
https://docs.saltstack.com/en/latest/topics/thorium/index.html

you have things working, stop the salt-master daemon and then
start it again using the init system as normal.

Debugging | 85

Acknowledgments

From Mircea
To the many people I am constantly learning from, including my
Cloudflare teammates and the network and Salt communities. Fur‐
thermore, I would like to extend my gratitude to Jerome Fleury,
Andre Schiper, and many others who believed in me, and taught me
about self-discipline and motivation.

From Seth
Thanks to my coworkers at SaltStack and to the Salt community.
Both have been a constant source of interesting and fascinating dis‐
cussions and inspiration over the last (nearly) seven years. The Salt
community is one of the most welcoming that I have been a part of
and it has been a joy.

Also a sincere thank you to our technical reviewers, Akhil Behl and
Eric Chou. Your suggestions and feedback were very helpful.

87

About the Authors
Mircea Ulinic works as a network engineer for Cloudflare, spending
most of his time writing code for network automation. Sometimes
he talks about the tools he’s working on and how automation really
helps to maintain reliable, stable, and self-resilient networks. Previ‐
ously, he was involved in research and later worked for EPFL in
Switzerland and a European service provider based in France. In
addition to networking, he has a strong passion for radio communi‐
cations (especially mobile networks), mathematics, and physics. He
can be found on LinkedIn, Twitter as @mirceaulinic, and at his web‐
site.

Seth House has been involved in the Salt community for six years
and has worked at SaltStack for five years. He wrote the salt-api and
also contributed to many core parts of Salt. He has collaborated with
the Salt community and started the Salt Formulas organization. Seth
has given over 30 introductions, presentations, and training sessions
at user groups and conferences and created tutorials on Salt for
companies. He has designed and helped fine-tune Salt deployments
at companies all across the United States.

https://uk.linkedin.com/in/mirceaulinic
https://mirceaulinic.net/
https://mirceaulinic.net/

	Cover
	Cloudflare
	Copyright
	Table of Contents
	Chapter 1. Introduction
	Salt and SaltStack
	Exploring the Architecture of Salt
	Diving into the Salt Proxy Minion

	Installing Salt: The Easy Way
	Introducing NAPALM
	The NAPALM Proxy

	Brief Introduction to Jinja and YAML
	The Three Rules of YAML
	The Three Rules of Jinja

	Extensible and Scalable Configuration Files: SLS

	Chapter 2. Preparing the Salt Environment
	Salt Nomenclature
	Pillar
	Configuring the NAPALM Pillar
	Grains

	Master Configuration
	File Roots
	Pillar Roots
	Using External Pillar

	Proxy Configuration
	The Pillar Top File
	Starting the Processes
	Starting the Master Process
	Starting the Proxy Processes

	Chapter 3. Understanding the Salt CLI Syntax
	Functions and Arguments
	Targeting Devices
	Targeting Using the Minion ID
	Targeting Using a List of Minion IDs
	Targeting Using Shell-Like Globbing
	Targeting Using Regular Expressions
	Targeting Using Grains
	Targeting Using Pillar Data
	Compound Target Matching
	Defining and Targeting Using Nodegroups
	Targeting Inside the Top File

	Options
	Outputters

	Chapter 4. Configuration Management: Introduction
	Loading Static Configuration
	Loading Dynamic Changes

	Chapter 5. Salt States: Advanced Configuration Management
	The State Top File
	NetConfig
	Automating the Configuration of the NTP Servers
	Automating the Interfaces Configuration of a Multivendor Network

	NetYANG
	Writing the Pillar Corresponding to the openconfig-lldp YANG Model
	Automating the Interfaces Configuration of a Multivendor Network, Using the NetYANG State

	Capirca and the NetACL Salt State Module

	Chapter 6. The Salt Event Bus
	Event Tags and Data
	Consume Salt Events
	Reactor
	HTTP Stream
	Raw ZeroMQ

	Event Types
	Job Events
	Authentication Events
	Minion Start Events
	Key Events
	Presence Events
	State Events

	Chapter 7. Beacons
	Configuration
	Troubleshooting

	Chapter 8. Engines
	Engines Are Easy to Configure
	napalm-logs and the napalm-syslog Engine
	The napalm-logs Library and Daemon
	The napalm-syslog Salt Engine

	Chapter 9. Salt Reactor
	Getting Started
	Best Practices
	Debugging

	Acknowledgments
	From Mircea
	From Seth

	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

